In [vB88], Johan van Benthem introduces Relational Semantics (RelSem for short), and states Soundness Theorem for Lambek Calculus (LC) w.r.t. RelSem. After doing this, he writes: "it would be very interesting to have the converse too", i.e., to have Completeness Theorem. The same question is in [vB91, p. 235]. In the following, we state Strong Completeness Theorems for different versions of LC.
@article{bwmeta1.element.bwnjournal-article-bcpv28z1p209bwm, author = {Mikul\'as, Szabolcs}, title = {Strong completeness of the Lambek Calculus with respect to Relational Semantics}, journal = {Banach Center Publications}, volume = {28}, year = {1993}, pages = {209-217}, zbl = {0793.03029}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv28z1p209bwm} }
Mikulás, Szabolcs. Strong completeness of the Lambek Calculus with respect to Relational Semantics. Banach Center Publications, Tome 28 (1993) pp. 209-217. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv28z1p209bwm/
[000] [An88] H. Andréka, On the representation problem of distributive semilattice-ordered semigroups, preprint, Budapest 1988.
[001] [An91] H. Andréka, Representations of distributive lattice-ordered semigroups with binary relations, Algebra Universalis 28 (1991), 12-25. | Zbl 0725.06007
[002] [ANS91] H. Andréka, I. Németi and I. Sain, On the strength of temporal proofs, Theoret. Comput. Sci. 80 (1991), 125-151.
[003] [vB88] J. .van Benthem, Semantic parallels in natural language and computation, Institute for Language, Logic and Information, Univ. of Amsterdam, 1988; also appeared in: H.-D. Ebbinghaus et al. (eds.), Logic Colloquium (Granada 1987), North-Holland, 1989, 331-375.
[004] [vB91] J. .van Benthem, Language in Action, North-Holland, 1991. | Zbl 0743.03018
[005] [Do90] K. Došen, A brief survey of frames for the Lambek calculus, Z. Math. Logik Grundlag. Math. 38 (1992), 179-187. | Zbl 0793.03025
[006] [Go87] R. Goldblatt, Logics of Time and Computation, CSLI Lecture Notes 7, Stanford Univ., 1987.
[007] [La58] J. Lambek, The mathematics of sentence structure, Amer. Math. Monthly 65 (1958), 154-170. | Zbl 0080.00702
[008] [Mi91] Sz. Mikulás, The completeness of the Lambek Calculus w.r.t. Relational Semantics, lecture at the Banach Center, Warsaw, 17th October, 1991.
[009] [Né91] I. Németi, Algebraizations of quantifier logics, an introductory overview, Studia Logica 50 (3/4) (1991), 485-570.
[010] [Ro91] D. Roorda, Resource Logics: Proof-theoretical Investigations, Ph.D. thesis, Fac. Math. and Comput. Sci., Univ. of Amsterdam, 1991.
[011] [Sa90] I. Sain, Beth's and Craig's properties via epimorphisms and amalgamation in algebraic logic, in: C. H. Bergman, R. D. Maddux and D. L. Pigozzi (eds.), Algebraic Logic and Universal Algebra in Computer Science, Lecture Notes in Comput. Sci. 425, Springer, 1990, 209-226. | Zbl 0793.03076