@article{bwmeta1.element.bwnjournal-article-bcpv28z1p201bwm, author = {Maddux, Roger}, title = {Finitary axiomatizations of the true relational equations}, journal = {Banach Center Publications}, volume = {28}, year = {1993}, pages = {201-208}, zbl = {0789.03050}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv28z1p201bwm} }
Maddux, Roger. Finitary axiomatizations of the true relational equations. Banach Center Publications, Tome 28 (1993) pp. 201-208. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv28z1p201bwm/
[000] [1] L. H. Chin and A. Tarski, Distributive and modular laws in the arithmetic of relation algebras, Univ. California Publ. Math. (N.S.) 1 (1951), 341-384.
[001] [2] S. Givant, Tarski's development of logic and mathematics based on the calculus of relations, in: Algebraic Logic, Colloq. Math. Soc. János Bolyai 54, North-Holland, Amsterdam 1991, 361-392. | Zbl 0784.03004
[002] [3] L. Henkin, J. D. Monk and A. Tarski, Cylindric Algebras, Part II, North-Holland, Amsterdam 1985.
[003] [4] B. Jónsson, Varieties of relation algebras, Algebra Universalis 15 (1982), 273-298. | Zbl 0545.08009
[004] [5] B. Jónsson, The theory of binary relations, in: Algebraic Logic, Colloq. Math. Soc. János Bolyai 54, North-Holland, Amsterdam 1991, 245-292. | Zbl 0760.03018
[005] [6] B. Jónsson and A. Tarski, Boolean algebras with operators, Part II, Amer. J. Math. 74 (1952), 127-162. | Zbl 0045.31601
[006] [7] R. C. Lyndon, The representation of relational algebras, II, Ann. of Math. (2) 63 (1956), 294-307. | Zbl 0070.24601
[007] [8] R. D. Maddux, Some sufficient conditions for the representability of relation algebras, Algebra Universalis 8 (1978), 162-172. | Zbl 0386.03033
[008] [9] R. D. Maddux, Topics in relation algebras, dissertation, Univ. of California, Berkeley 1978.
[009] [10] R. D. Maddux, Some varieties containing relation algebras, Trans. Amer. Math. Soc. 272 (1982), 501-526. | Zbl 0515.03039
[010] [11] R. D. Maddux, Necessary subalgebras of simple nonintegral semiassociative relation algebras, Algebra Universalis 27 (1990), 544-558. | Zbl 0723.03038
[011] [12] R. D. Maddux, Pair-dense relation algebras, Trans. Amer. Math. Soc. 328 (1991), 83-131. | Zbl 0746.03055
[012] [13] R. D. Maddux, Introductory course on relation algebras, finite-dimensional cylindric algebras, and their interconnections, in: Algebraic Logic, Colloq. Math. Soc. János Bolyai 54, North-Holland, Amsterdam 1991, 361-392. | Zbl 0749.03048
[013] [14] R. D. Maddux, The origin of relation algebras in the development and axiomatization of the calculus of relations, Studia Logica 50 (1991), 421-455. | Zbl 0754.03042
[014] [15] R. D. Maddux and A. Tarski, A sufficient condition for the representability of relation algebras, Notices Amer. Math. Soc. 23 (1976), A-477.
[015] [16] R. N. W. McKenzie, A general method for constructing elementary axioms for classes of representable structures, preprint, 1966.
[016] [17] J. D. Monk, On representable relation algebras, Michigan Math. J. 11 (1964), 207-210. | Zbl 0137.00603
[017] [18] J. D. Monk, Nonfinitizability of classes of representable cylindric algebras, J. Symbolic Logic 34 (1969), 331-343. | Zbl 0181.30002
[018] [19] A. Tarski and S. Givant, A Formalization of Set Theory without Variables, Amer. Math. Soc., 1987. | Zbl 0654.03036
[019] [20] Y. Venema, Two-dimensional modal logics for relational algebras and temporal logic of intervals, LP-89-03, Institute for Language, Logic, and Information, Univ. of Amsterdam, 1989.
[020] [21] Y. Venema, Many-dimensional modal logic, dissertation, Univ. of Amsterdam, 1992.