A geometric and analytic approach to some problems associated with Emden equations
Véron, Laurent
Banach Center Publications, Tome 27 (1992), p. 499-509 / Harvested from The Polish Digital Mathematics Library
Publié le : 1992-01-01
EUDML-ID : urn:eudml:doc:262742
@article{bwmeta1.element.bwnjournal-article-bcpv27z2p499bwm,
     author = {V\'eron, Laurent},
     title = {A geometric and analytic approach to some problems associated with Emden equations},
     journal = {Banach Center Publications},
     volume = {27},
     year = {1992},
     pages = {499-509},
     zbl = {0819.35046},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv27z2p499bwm}
}
Véron, Laurent. A geometric and analytic approach to some problems associated with Emden equations. Banach Center Publications, Tome 27 (1992) pp. 499-509. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv27z2p499bwm/

[000] [1] T. Aubin, Problèmes isopérimétriques et espaces de Sobolev, J. Differential Geom. 11 (1976), 573-598. | Zbl 0371.46011

[001] [2] M. Berger, P. Gauduchon et E. Mazet, Le spectre d'une variété riemannienne, Lecture Notes in Math. 194, Springer, 1971. | Zbl 0223.53034

[002] [3] M. F. Bidaut-Véron and L. Véron, Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations, Invent. Math. 106 (1991), 489-539.

[003] [4] L. A. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behaviour of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math. 42 (1989), 271-297. | Zbl 0702.35085

[004] [5] S. Chandrasekhar, An Introduction to the Study of Stellar Structure, Dover, 1967.

[005] [6] S. Y. A. Chang and P. C. Yang, Prescribing Gaussian curvature on S², Acta Math. 159 (1987), 215-259. | Zbl 0636.53053

[006] [7] V. R. Emden, Gaskugeln, Teubner, Leipzig 1897.

[007] [8] R. H. Fowler, Further studies of Emden's and similar differential equations, Quart. J. Math. Oxford Ser. 2 (1931), 259-288. | Zbl 0003.23502

[008] [9] B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math. 34 (1981), 525-598. | Zbl 0465.35003

[009] [10] H. Hamza and S. Ilias, private communication and detailed paper, to appear.

[010] [11] M. Obata, The conjectures on conformal transformations of Riemannian manifolds, J. Differential Geom. 6 (1971), 247-258. | Zbl 0236.53042

[011] [12] P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conf. Ser. in Math. 65, Amer. Math. Soc., 1984.

[012] [13] L. Simon, Asymptotics for a class of nonlinear evolution equations with applications to geometric problems, Ann. of Math. 118 (1983), 525-571. | Zbl 0549.35071

[013] [14] L. Simon, Isolated singularities of extrema of geometric variational problems, in: Harmonic Mappings and Minimal Immersions, Lecture Notes in Math. 1161, Springer, 1985, 206-277.

[014] [15] L. Simon, Entire solutions of the minimal surface equation, J. Differential Geom. 30 (1989), 643-688. | Zbl 0687.53009