Superposition of functions in Sobolev spaces of fractional order. A survey
Sickel, Winfried
Banach Center Publications, Tome 27 (1992), p. 481-497 / Harvested from The Polish Digital Mathematics Library
Publié le : 1992-01-01
EUDML-ID : urn:eudml:doc:262683
@article{bwmeta1.element.bwnjournal-article-bcpv27z2p481bwm,
     author = {Sickel, Winfried},
     title = {Superposition of functions in Sobolev spaces of fractional order. A survey},
     journal = {Banach Center Publications},
     volume = {27},
     year = {1992},
     pages = {481-497},
     zbl = {0792.47062},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv27z2p481bwm}
}
Sickel, Winfried. Superposition of functions in Sobolev spaces of fractional order. A survey. Banach Center Publications, Tome 27 (1992) pp. 481-497. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv27z2p481bwm/

[000] [1] D. R. Adams and M. Frazier, BMO and smooth truncation in Sobolev spaces, Studia Math. 89 (1988), 241-260. | Zbl 0679.46025

[001] [2] J. Appell and P. Zabreĭko, Nonlinear Superposition Operators, Cambridge Univ. Press, Cambridge 1990.

[002] [3] N. Aronszajn and K. T. Smith, Theory of Bessel potentials. I, Ann. Inst. Fourier (Grenoble) 11 (1961), 385-476. | Zbl 0102.32401

[003] [4] G. Bourdaud, Sur les opérateurs pseudo-différentiels à coefficients peu réguliers, Diss., Univ. de Paris Sud, 1983.

[004] [5] A. P. Calderón, Lebesgue spaces of functions and distributions, in: Partial Differential Equations, Proc. Sympos. Pure Math. 4, Amer. Math. Soc., 1961, 33-49.

[005] [6] T. Cazenave and F. B. Weissler, The Cauchy Problem for the critical nonlinear Schrödinger equation in Hs, Nonlinear Anal. 14 (1990), 807-836. | Zbl 0706.35127

[006] [7] B. E. J. Dahlberg, A note on Sobolev spaces, in: Proc. Sympos. Pure Math. 35, Part I, Amer. Math. Soc., 1979, 183-185.

[007] [8] P. Drabek and Th. Runst, On the existence of solutions of a semilinear elliptic boundary value problem with superlinear nonlinearities, Z. Anal. Anwendungen 9 (1990), 105-112. | Zbl 0726.35043

[008] [9] D. E. Edmunds and H. Triebel, Remarks on nonlinear elliptic equations of the type Δu+u=|u|p+f in bounded domains, J. London Math. Soc. (2) 91 (1985), 331-339.

[009] [10] J. Franke and T. Runst, On the admissibility of function spaces of type Bp,qs and Fp,qs and boundary value problems for non-linear partial differential equations, Anal. Math. 13 (1987), 3-27. | Zbl 0654.35034

[010] [11] L. Maligranda, Integration of locally Hölder operators, Studia Math. 78 (1984), 289-296. | Zbl 0566.46039

[011] [12] M. Marcus and V. J. Mizel, Complete characterization of functions which act via superposition on Sobolev spaces, Trans. Amer. Math. Soc. 251 (1979), 187-218. | Zbl 0417.46035

[012] [13] J. Marschall, Pseudo-differential operators with nonregular symbols, thesis, FU Berlin, 1985.

[013] [14] Y. Meyer, Remarques sur un théorème de J. M. Bony, Rend. Circ. Mat. Palermo (2) Suppl. 1 (1981), 1-20.

[014] [15] S. Mizohata, Lectures on the Cauchy Problem, Tata Institute, Bombay 1965.

[015] [16] J. Moser, A rapidly convergent iteration method and non-linear differential equations. I, Ann. Scuola Norm. Sup. Pisa 20 (2) (1966), 265-315; II, ibid. 20 (3) (1966), 499-535. | Zbl 0144.18202

[016] [17] L. Nirenberg, On elliptic partial differential equations, ibid. 13 (1959), 115-162. | Zbl 0088.07601

[017] [18] J. Peetre, Interpolation of Lipschitz operators and metric spaces, Mathematica (Cluj) 12 (35) (1970), 325-334. | Zbl 0217.44504

[018] [19] T. Runst, Paradifferential operators in spaces of Triebel-Lizorkin and Besov type, Z. Anal. Anwendungen 4 (1985), 557-573. | Zbl 0592.35011

[019] [20] T. Runst, Mapping properties of non-linear operators in spaces of Triebel-Lizorkin and Besov type, Anal. Math. 12 (1986), 323-346. | Zbl 0644.46022

[020] [21] T. Runst, Solvability of semilinear elliptic boundary value problems in function spaces, in: Surveys on Analysis, Geometry and Mathematical Physics, Teubner-Texte Math. 117, Teubner, Leipzig 1990, 198-292.

[021] [22] T. Runst and W. Sickel, Mapping properties of T:f → |f| in Besov-Triebel-Lizorkin spaces and an application to a nonlinear boundary value problem, preprint.

[022] [23] W. Sickel, On pointwise multipliers in Besov-Triebel-Lizorkin spaces, in: Seminar Analysis of the Karl-Weierstrass-Institute 1985/86, Teubner-Texte Math. 96, Teubner, Leipzig 1987, 45-103.

[023] [24] W. Sickel, On boundedness of superposition operators in spaces of Triebel-Lizorkin type, Czechoslovak Math. J. 39 (114) (1989), 323-347. | Zbl 0693.46039

[024] [25] W. Sickel, Abbildungseigenschaften von Nemytckii-Operatoren in Besov-Triebel-Lizorkin-Räumen und ausgewählte Anwendungen, manuscript.

[025] [26] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press., Princeton 1970. | Zbl 0207.13501

[026] [27] R. S. Strichartz, Multipliers on fractional Sobolev spaces, J. Math. Mech. 16 (1967), 1031-1060. | Zbl 0145.38301

[027] [28] F. Szigeti, On Niemitzki operators in Sobolev spaces, Z. Angew. Math. Mech. 63 (5) (1983), T332. | Zbl 0549.47014

[028] [29] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, NorthHolland, Amsterdam, and Deutscher Verlag Wiss., Berlin 1978.

[029] [30] H. Triebel, Theory of Function Spaces, Akad. Verlagsges. Geest & Portig K. G., Leipzig 1983 and Birkhäuser, Basel 1983.

[030] [31] H. Triebel, Mapping properties of non-linear operators generated by holomorphic ϕ(u) in function spaces of Besov-Sobolev-Hardy type. Boundary value problems for elliptic differential equations of type Δu = f(x) + Φ(u), Math. Nachr. 117 (1984), 193-213.

[031] [32] M. Yamazaki, A quasi-homogeneous version of paradifferential operators, I. Boundedness on spaces of Besov type, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 33 (1986), 131-174. | Zbl 0608.47058