Existence of global solution of a nonlinear wave equation with short-range potential
Georgiev, V. ; Ianakiev, K.
Banach Center Publications, Tome 27 (1992), p. 163-167 / Harvested from The Polish Digital Mathematics Library
Publié le : 1992-01-01
EUDML-ID : urn:eudml:doc:262588
@article{bwmeta1.element.bwnjournal-article-bcpv27z1p163bwm,
     author = {Georgiev, V. and Ianakiev, K.},
     title = {Existence of global solution of a nonlinear wave equation with short-range potential},
     journal = {Banach Center Publications},
     volume = {27},
     year = {1992},
     pages = {163-167},
     zbl = {0842.35059},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv27z1p163bwm}
}
Georgiev, V.; Ianakiev, K. Existence of global solution of a nonlinear wave equation with short-range potential. Banach Center Publications, Tome 27 (1992) pp. 163-167. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv27z1p163bwm/

[000] [1] P. Datti, Long time existence of classical solutions to a non-linear wave equation in exterior domains, Ph.D. Dissertation, New York University, 1985.

[001] [2] P. Godin, Long time behaviour of solutions to some nonlinear rotation invariant mixed problems, Comm. Partial Differential Equations 14 (3) (1989), 299-374. | Zbl 0676.35065

[002] [3] L. Hörmander, The Analysis of Linear Partial Differential Operators, Vol. I, Distribution Theory and Fourier Analysis, Springer, New York 1983. | Zbl 0521.35001

[003] [4] L. Hörmander, Non-linear Hyperbolic Differential Equations, Lectures 1986-1987, Lund 1988.

[004] [5] F. John, Blow-up for quasi-linear wave equations in three space dimensions, Comm. Pure Appl. Math. 34 (1981), 20-51. | Zbl 0453.35060

[005] [6] S. Klainerman, The null condition and global existence to nonlinear wave equations, in: Lectures in Appl. Math. 23, Part 1, Amer. Math. Soc., Providence, R.I., 1986, 293-326.

[006] [7] S. Klainerman, Uniform decay estimates and the Lorentz invariance of the classical wave equation, Comm. Pure Appl. Math. 38 (1985), 321-332. | Zbl 0635.35059

[007] [8] C. Morawetz, Energy decay for star-shaped obstacles, Appendix 3 in: P. Lax and R. Phillips, Scattering Theory, Academic Press, New York 1967.

[008] [9] H. Pecher, Scattering for semilinear wave equations with small initial data in three space dimensions, Math. Z. 198 (1988), 277-288. | Zbl 0627.35064

[009] [10] Y. Shibata and Y. Tsutsumi, On global existence theorem of small amplitude solutions for nonlinear wave equations in exterior domains, ibid. 191 (1986), 165-199. | Zbl 0592.35028