Let there be given a differential operator on of the form , where is a real matrix and μ is a complex number. We study the following question: To what extent the mapping is surjective? We shall give some conditions on A and μ which assure the surjectivity of D.
@article{bwmeta1.element.bwnjournal-article-bcpv27z1p147bwm, author = {Felix, Rainer}, title = {Differential operators of the first order with degenerate principal symbols}, journal = {Banach Center Publications}, volume = {27}, year = {1992}, pages = {147-161}, zbl = {0823.35028}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv27z1p147bwm} }
Felix, Rainer. Differential operators of the first order with degenerate principal symbols. Banach Center Publications, Tome 27 (1992) pp. 147-161. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv27z1p147bwm/
[000] [1] R. Felix, Solvability of differential equations with linear coefficients of nilpotent type, Proc. Amer. Math. Soc. 94 (1985), 161-166. | Zbl 0541.35010
[001] [2] R. Felix, Zentrale Distributionen auf Exponentialgruppen, J. Reine Angew. Math. 389 (1988), 133-156.
[002] [3] G. B. Folland, Real Analysis. Modern Techniques and Their Applications, Wiley, New York 1984. | Zbl 0549.28001
[003] [4] L. Hörmander, On the division of distributions by polynomials, Ark. Mat. 3 (1958), 555-568. | Zbl 0131.11903
[004] [5] L. Hörmander, The Analysis of Linear Partial Differential Operators I, Springer, Berlin 1983. | Zbl 0521.35001
[005] [6] D. Müller and F. Ricci, Analysis of second order differential operators on Heisenberg groups II, preprint. | Zbl 0790.43011
[006] [7] H. H. Schaefer, Topological Vector Spaces, 5th printing, Springer, New York 1986.
[007] [8] L. Schwartz, Théorie des distributions, Hermann, Paris 1966.