@article{bwmeta1.element.bwnjournal-article-bcpv27z1p129bwm, author = {Eells, James and Lemaire, Luc}, title = {Some properties of exponentially harmonic maps}, journal = {Banach Center Publications}, volume = {27}, year = {1992}, pages = {129-136}, zbl = {0799.58021}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-bcpv27z1p129bwm} }
Eells, James; Lemaire, Luc. Some properties of exponentially harmonic maps. Banach Center Publications, Tome 27 (1992) pp. 129-136. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-bcpv27z1p129bwm/
[000] [1] G. Aronsson, Extension of functions satisfying Lipschitz conditions, Ark. Mat. 6 (1967), 551-561. | Zbl 0158.05001
[001] [2] G. Aronsson, On certain singular solutions of the partial differential equation , Manuscripta Math. 47 (1984), 133-151.
[002] [3] P. Baird and J. , Eells, A conservation law for harmonic maps, in: Geometry Symp. Utrecht 1980, Lecture Notes in Math. 894, Springer 1981, 1-25.
[003] [4] M. Carpenter, The calculus of variations on a Riemannian manifold: regularity theory and the status of the Euler-Lagrange necessary condition, M.Sc. dissertation, Warwick 1991.
[004] [5] D. M. Duc and J. Eells, Regularity of exponentially harmonic functions, Internat. J. Math., to appear. | Zbl 0751.58007
[005] [6] J. Eells and L. Lemaire, Selected topics in harmonic maps, CBMS Regional Conf. Ser. Math. 50, Amer. Math. Soc., 1983. | Zbl 0515.58011
[006] [7] J. Eells and L. Lemaire, Another report on harmonic maps, Bull. London Math. Soc. 20 (1988), 385-524. | Zbl 0669.58009
[007] [8] M. Giaquinta, Multiple Integrals in the Calculus of Variations and Non-linear Elliptic Theory, Ann. of Math. Stud. 105, Princeton Univ. Press 1983.
[008] [9] C. Morrey, Multiple Integrals in the Calculus of Variations, Grundlehren Math. Wiss. 130, Springer, 1966. | Zbl 0142.38701
[009] [10] R. Schoen, Analytic aspects of the harmonic map problem, in: Math. Sci. Res. Inst. Publ. 2, Springer, 1984, 321-358.
[010] [11] J. Serrin, The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables, Philos. Trans. Roy. Soc. London A 264 (1969), 413-496. | Zbl 0181.38003
[011] [12] L. M. Sibner and R. J. Sibner, A non-linear Hodge-de Rham theorem, Acta Math. 125 (1970), 57-73. | Zbl 0216.45703
[012] [13] R. T. Smith, The second variation formula for harmonic mappings, Proc. Amer. Math. Soc. 47 (1975), 229-236. | Zbl 0303.58008