For a domain D ⊂ ℂ the Kobayashi-Royden ϰ and Hahn h pseudometrics are equal iff D is simply connected. Overholt showed that for , n ≥ 3, we have . Let D₁, D₂ ⊂ ℂ. The aim of this paper is to show that iff at least one of D₁, D₂ is simply connected or biholomorphic to ℂ 0. In particular, there are domains D ⊂ ℂ² for which .
@article{bwmeta1.element.bwnjournal-article-apmv75z3p289bwm, author = {Witold Jarnicki}, title = {Kobayashi-Royden vs. Hahn pseudometric in $\mathbb{C}$$^2$}, journal = {Annales Polonici Mathematici}, volume = {75}, year = {2000}, pages = {289-294}, zbl = {0982.32012}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv75z3p289bwm} }
Witold Jarnicki. Kobayashi-Royden vs. Hahn pseudometric in ℂ². Annales Polonici Mathematici, Tome 75 (2000) pp. 289-294. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv75z3p289bwm/
[000] [Cho] K. S. Choi, Injective hyperbolicity of product domain, J. Korea Soc. Math. Educ. Ser. B Pure Appl. Math. 5 (1998), 73-78.
[001] [Hah] K. T. Hahn, Some remark on a new pseudo-differential metric, Ann. Polon. Math. 39 (1981), 71-81.
[002] [Jar-Pfl] M. Jarnicki and P. Pflug, Invariant Distances and Metrics in Complex Analysis, de Gruyter Exp. Math. 9, de Gruyter, Berlin, 1993.
[003] [Ove] M. Overholt, Injective hyperbolicity of domains, Ann. Polon. Math. 62 (1995), 79-82. | Zbl 0847.32027
[004] [Roy] H. L. Royden, Remarks on the Kobayashi metric, in: Several Complex Variables, II, Lecture Notes in Math. 189, Springer, 1971, 125-137.
[005] [Two-Win] P. Tworzewski and T. Winiarski, Continuity of intersection of analytic sets, Ann. Polon. Math. 42 (1983), 387-393. | Zbl 0576.32013
[006] [Ves] E. Vesentini, Injective hyperbolicity, Ricerche Mat. 36 (1987), 99-109.
[007] [Vig] J.-P. Vigué, Une remarque sur l'hyperbolicité injective, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 83 (1989), 57-61. | Zbl 0741.32019