Let L be a second order, linear, parabolic partial differential operator, with bounded Hölder continuous coefficients, defined on the closure of the strip . We prove a representation theorem for an arbitrary function, in terms of the fundamental solution of the equation Lu=0. Such a theorem was proved in an earlier paper for a parabolic operator in divergence form with coefficients, but here much weaker conditions suffice. Some consequences of the representation theorem, for the solutions of Lu=0, are also presented.
@article{bwmeta1.element.bwnjournal-article-apmv75z3p281bwm, author = {Watson, Neil}, title = {The representation of smooth functions in terms of the fundamental solution of a linear parabolic equation}, journal = {Annales Polonici Mathematici}, volume = {75}, year = {2000}, pages = {281-287}, zbl = {0959.35006}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv75z3p281bwm} }
Watson, Neil. The representation of smooth functions in terms of the fundamental solution of a linear parabolic equation. Annales Polonici Mathematici, Tome 75 (2000) pp. 281-287. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv75z3p281bwm/
[000] [1] D. G. Aronson, Non-negative solutions of linear parabolic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 22 (1968), 607-694. | Zbl 0182.13802
[001] [2] J. Chabrowski and N. A. Watson, Properties of solutions of weakly coupled parabolic systems, J. London Math. Soc. 23 (1981), 475-495. | Zbl 0479.35049
[002] [3] J. L. Doob, Classical Potential Theory and its Probabilistic Counterpart, Grund- lehren Math. Wiss. 262, Springer, 1984. | Zbl 0549.31001
[003] [4] A. M. Il'in, A. S. Kalashnikov and O. A. Oleĭnik, Linear equations of the second order of parabolic type, Uspekhi Mat. Nauk 17 (1962), no. 3, 3-146 (in Russian); English transl.: Russian Math. Surveys 17 (1962), no. 3, 1-143.
[004] [5] E. P. Smyrnélis, Sur les moyennes des fonctions paraboliques, Bull. Sci. Math. 93 (1969), 163-173. | Zbl 0203.09701
[005] [6] N. A. Watson, Uniqueness and representation theorems for parabolic equations, J. London Math. Soc. 8 (1974), 311-321. | Zbl 0285.35034
[006] [7] N. A. Watson, Boundary measures of solutions of partial differential equations, Mathematika 29 (1982), 67-82. | Zbl 0511.35020
[007] [8] N. A. Watson, A decomposition theorem for solutions of parabolic equations, Ann. Acad. Sci. Fenn. Math. 25 (2000), 151-160. | Zbl 0939.35080