Multiple positive solutions to singular boundary value problems for superlinear second order FDEs
Jiang, Daqing
Annales Polonici Mathematici, Tome 75 (2000), p. 257-270 / Harvested from The Polish Digital Mathematics Library

We study the existence of positive solutions to the singular boundary value problem for a second-order FDE ⎧ u'' + q(t) f(t,u(w(t))) = 0, for almost all 0 < t < 1, ⎨ u(t) = ξ(t), a ≤ t ≤ 0, ⎩ u(t) = η(t), 1 ≤ t ≤ b, where q(t) may be singular at t = 0 and t = 1, f(t,u) may be superlinear at u = ∞ and singular at u = 0.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:208399
@article{bwmeta1.element.bwnjournal-article-apmv75z3p257bwm,
     author = {Jiang, Daqing},
     title = {Multiple positive solutions to singular boundary value problems for superlinear second order FDEs},
     journal = {Annales Polonici Mathematici},
     volume = {75},
     year = {2000},
     pages = {257-270},
     zbl = {0963.34060},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv75z3p257bwm}
}
Jiang, Daqing. Multiple positive solutions to singular boundary value problems for superlinear second order FDEs. Annales Polonici Mathematici, Tome 75 (2000) pp. 257-270. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv75z3p257bwm/

[00000] [1] R. P. Agarwal and D. O'Regan, Singular boundary value problems for superlinear second ordinary and delay differential equations, J. Differential Equations 130 (1996), 335-355.

[00001] [2] R. P. Agarwal and D. O'Regan, Nonlinear superlinear singular and nonsingular second order boundary value problems, ibid. 143 (1998), 60-95.

[00002] [3] J. V. Baxley, A singular nonlinear boundary value problem: Membrane response of a spherical cap, SIAM J. Appl. Math. 48 (1988), 497-505. | Zbl 0642.34014

[00003] [4] L. E. Bobisud, D. O'Regan and W. D. Royalty, Singular boundary value problems, Appl. Anal. 23 (1986), 233-243. | Zbl 0584.34012

[00004] [5] J. E. Bouillet and S. M. Gomes, An equation with a singular nonlinearity related to diffusion problems in one dimension, Quart. Appl. Math. 42 (1985), 395-402. | Zbl 0566.35061

[00005] [6] A. Callegari and A. Nachman, Some singular nonlinear differential equations arising in boundary layer theory, J. Math. Anal. Appl. 64 (1978), 96-105. | Zbl 0386.34026

[00006] [7] L. H. Erbe and Q. K. Kong, Boundary value problems for singular second-order functional differential equations, J. Comput. Appl. Math. 53 (1994), 377-388. | Zbl 0816.34046

[00007] [8] L. H. Erbe, Q. K. Kong and B. G. Zhang, Oscillation Theory and Boundary Value Problems in Functional Differential Equations, Dekker, New York, 1995.

[00008] [9] L. H. Erbe, Z. C. Wang and L. T. Li, Boundary value problems for second order mixed type functional, differential equations, in: Boundary Value Problems for Functional Differential Equations, World Sci., 1995, 143-151. | Zbl 0842.34065

[00009] [10] J. A. Gatica, G. E. Hernandez and P. Waltman, Radially symmetric solutions of a class of singular elliptic equations, Proc. Edinburgh Math. Soc. 33 (1990), 168-180. | Zbl 0689.35029

[00010] [11] J. A. Gatica, V. Oliker and P. Waltman, Singular nonlinear boundary value problems for second order differential equations, J. Differential Equations 79 (1989), 62-78. | Zbl 0685.34017

[00011] [12] S. M. Gomes and J. Sprekels, Krasonselskii's Theorem on operators compressing a cone: Application to some singular boundary value problems, J. Math. Anal. Appl. 153 (1990), 443-459. | Zbl 0766.47033

[00012] [13] J. Janus and J. Myjak, A generalized Emden-Fowler equation with a negative exponent, Nonlinear Anal. 23 (1994), 953-970. | Zbl 0819.34016

[00013] [14] D. Q. Jiang and J. Y. Wang, On boundary value problems for singular second-order functional differential equations, J. Comput. Appl. Math. 116 (2000), 231-241. | Zbl 0952.34053

[00014] [15] D. Q. Jiang and P. X. Weng, Existence of positive solutions for boundary value problems of second-order functional differential equations, Electron. J. Qual. Theory Differ. Equ. 1998, no. 6, 13 pp. | Zbl 0907.34048

[00015] [16] M. A. Krasnosel'skiĭ, Positive Solutions of Operator Equations, Noordhoff, Groningen, 1964.

[00016] [17] B. S. Lalli and B. G. Zhang, Boundary value problems for second order functional differential equations, Ann. Differential Equations 8 (1992), 261-268. | Zbl 0760.34054

[00017] [18] J. W. Lee and D. O'Regan, Existence results for differential delay equations - I, J. Differential Equations 102 (1993), 342-359. | Zbl 0782.34070

[00018] [19] J. W. Lee and D. O'Regan, Existence results for differential delay equations - II, Nonlinear Anal. 17 (1991), 683-702. | Zbl 0782.34071

[00019] [20] A. Nachman and A. Callegari, A nonlinear boundary value problems in the theory of pseudoplastic fluids, SIAM J. Appl. Math. 38 (1980), 275-281. | Zbl 0453.76002

[00020] [21] S. K. Ntouyas, Y. G. Sficas and P. C. Tsamatos, An existence principle for boundary value problems for second order functional-differential equations, Nonlinear Anal. 20 (1993), 215-222. | Zbl 0774.34052

[00021] [22] D. O'Regan, Positive solutions to singular and nonsingular second-order boundary value problems, J. Math. Anal. Appl. 142 (1989), 40-52.

[00022] [23] D. O'Regan, Singular Dirchlet boundary value problems - I, superlinear and nonresonant case, Nonlinear Anal. 29 (1997), 221-245.

[00023] [24] S. D. Taliaferro, A nonlinear singular boundary value problem, ibid. 3 (1979), 897-904. | Zbl 0421.34021

[00024] [25] C. J. Van Duijn, S. M. Gomes and H. F. Zhang, On a class of similarity solutions of the equation ut=(|u|m-1ux)x with m > -1, IMA J. Appl. Math. 41 (1988), 147-163. | Zbl 0701.35090

[00025] [26] J. Y. Wang, A two-point boundary value problem with singularity, Northeast. Math. J. 3 (1987), 281-291.

[00026] [27] J. Y. Wang, A free boundary problem for a generalized diffusion equation, Nonlinear Anal. 14 (1990), 691-700. | Zbl 0721.35092

[00027] [28] J. Y. Wang, On positive solutions of singular nonlinear two-point boundary problems, J. Differential Equations 107 (1994), 163-174. | Zbl 0792.34023

[00028] [29] J. Y. Wang, Solvability of singular nonlinear two-point boundary problems, Nonlinear Anal. 24 (1995), 555-561. | Zbl 0876.34017

[00029] [30] J. Y. Wang and W. J. Gao, A singular boundary value problem for the one-dimensional p-Laplacian, J. Math. Anal. Appl. 201 (1996), 851-866. | Zbl 0860.34011

[00030] [31] J. Y. Wang and J. Jiang, The existence of positive solutions to a singular nonlinear boundary value problem, ibid. 176 (1993), 322-329. | Zbl 0781.34018

[00031] [32] H. J. Weinischke, On finite displacement of circular elastic membranes, Math. Methods Appl. Sci. 9 (1987), 76-98.

[00032] [33] P. X. Weng, Boundary value problems for second order mixed-type functional-differential equations, Appl. Math. J. Chinese Univ. Ser. B 12 (1997), 155-164. | Zbl 0881.34075

[00033] [34] P. X. Weng and D. Q. Jiang, Existence of positive solutions for boundary value problem of second-order FDE, Comput. Math. Appl. 37 (1999), 1-9.