Let be a real-analytic submanifold and H(M) the algebra of real analytic functions on M. If K ⊂ M is a compact subset we consider ; is a multiplicative subset of . Let be the localization of H(M) with respect to . In this paper we prove, first, that is a regular ring (hence noetherian) and use this result in two situations: 1) For each open subset , we denote by O(Ω) the subalgebra of H(Ω) defined as follows: f ∈ O(Ω) if and only if for all x ∈ Ω, the germ of f at x, , is algebraic on . We prove that if Ω is a bounded subanalytic subset, then O(Ω) is a regular ring (hence noetherian). 2) Let be a Nash submanifold and N(M) the ring of Nash functions on M; we have an injection N(M) → H(M). In [2] it was proved that every prime ideal p of N(M) generates a prime ideal of analytic functions pH(M) if M or V(p) is compact. We use our Theorem 1 to give another proof in the situation where V(p) is compact. Finally we show that this result holds in some particular situation where M and V(p) are not assumed to be compact.
@article{bwmeta1.element.bwnjournal-article-apmv75z3p247bwm, author = {Elkhadiri, Abdelhafed and Hlal, Mouttaki}, title = {Noeth\'erianit\'e de certaines alg\`ebres de fonctions analytiques et applications}, journal = {Annales Polonici Mathematici}, volume = {75}, year = {2000}, pages = {247-256}, zbl = {0964.32006}, language = {fra}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv75z3p247bwm} }
Elkhadiri, Abdelhafed; Hlal, Mouttaki. Noethérianité de certaines algèbres de fonctions analytiques et applications. Annales Polonici Mathematici, Tome 75 (2000) pp. 247-256. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv75z3p247bwm/
[00000] [1] J. Bochnak, M. Coste et M.-F. Roy, Géométrie algébrique réelle, Ergeb. Math. Grenzgeb. 12, Springer, New York, 1987. | Zbl 0633.14016
[00001] [2] M. Coste, J. M. Ruiz and M. Shiota, Approximation in compact Nash manifolds, Amer. J. Math. 117 (1995), 905-927. | Zbl 0873.32007
[00002] [3] A. Elkhadiri et J.-Cl. Tougeron, Familles noethériennes de modules sur et applications, Bull. Sci. Math. 120 (1996), 253-292.
[00003] [4] H. Matsumura, Commutative Algebra, Benjamin, New York, 1970.
[00004] [5] D. Popescu, General Neron desingularization, Nagoya Math. J. 100 (1985), 97-126. | Zbl 0561.14008