We study an evolution problem which describes the quasistatic contact of a viscoelastic body with a foundation. We model the contact with normal damped response and a local friction law. We derive a variational formulation of the model and we establish the existence of a unique weak solution to the problem. The proof is based on monotone operators and fixed point arguments. We also establish the continuous dependence of the solution on the contact boundary conditions.
@article{bwmeta1.element.bwnjournal-article-apmv75z3p233bwm, author = {Awbi, B. and Essoufi, El H. and Sofonea, M.}, title = {A viscoelastic contact problem with normal damped response and friction}, journal = {Annales Polonici Mathematici}, volume = {75}, year = {2000}, pages = {233-246}, zbl = {0994.74051}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv75z3p233bwm} }
Awbi, B.; Essoufi, El H.; Sofonea, M. A viscoelastic contact problem with normal damped response and friction. Annales Polonici Mathematici, Tome 75 (2000) pp. 233-246. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv75z3p233bwm/
[000] [1] A. Amassad and M. Sofonea, Analysis of a quasistatic viscoplastic problem involving Tresca friction law, Discrete Cont. Dynam. Systems 4 (1998), 55-72. | Zbl 0972.74050
[001] [2] L.-E. Anderson, A quasistatic frictional problem with normal compliance, Nonlinear Anal. 16 (1991), 347-370.
[002] [3] H. Brezis, Equations et inéquations non linéaires dans les espaces vectoriels en dualité, Ann. Inst. Fourier (Grenoble) 18 (1968), no. 1, 115-175. | Zbl 0169.18602
[003] [4] M. Cocu, E. Pratt and M. Raous, Formulation and approximation of quasistatic frictional contact, Internat. J. Engrg. Sci. 34 (1996), 783-798. | Zbl 0900.73684
[004] [5] G. Duvaut et J. L. Lions, Les Inéquations en Mécanique et en Physique, Dunod, Paris, 1972. | Zbl 0298.73001
[005] [6] R. Ionescu and M. Sofonea, Functional and Numerical Methods in Viscoplasticity, Oxford Univ. Press, Oxford, 1993. | Zbl 0787.73005
[006] [7] N. Kikuchi and J. T. Oden, Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods, SIAM, Philadelphia, 1988. | Zbl 0685.73002
[007] [8] A. Klarbring, A. Mikelić and M. Shillor, The rigid punch problem with friction, Internat. J. Engrg. Sci. 29 (1991), 751-768. | Zbl 0749.73072
[008] [9] J. Nečas and I. Hlaváček, Mathematical Theory of Elastic and Elastoplastic Bodies: an Introduction, Elsevier, Amsterdam, 1981.
[009] [10] P. D. Panagiotopoulos, Inequality Problems in Mechanics and Applications, Birkhäuser, Basel, 1985.
[010] [11] M. Raous, M. Jean and J. J. Moreau, Contact Mechanics, Plenum Press, New York, 1995.
[011] [12] M. Rochdi, M. Shillor and M. Sofonea, A quasistatic viscoelastic contact problem with normal compliance and friction, J. Elasticity 51 (1998), 105-126. | Zbl 0921.73231
[012] [13] M. Rochdi, M. Shillor and M. Sofonea, A quasistatic contact problem with directional friction and damped response, Appl. Anal. 68 (1998), 409-422. | Zbl 0904.73055
[013] [14] M. Rochdi, M. Shillor and M. Sofonea, Analysis of a quasistatic viscoelastic problem with friction and damage, Adv. Math. Sci. Appl. 10 (2000), 173-189. | Zbl 0962.74044
[014] [15] M. Sofonea and M. Shillor, Variational analysis of quasistatic viscoplastic contact problems with friction, Comm. Appl. Anal., to appear. | Zbl 1084.74541