Newton numbers and residual measures of plurisubharmonic functions
Rashkovskii, Alexander
Annales Polonici Mathematici, Tome 75 (2000), p. 213-231 / Harvested from The Polish Digital Mathematics Library

We study the masses charged by (ddcu)n at isolated singularity points of plurisubharmonic functions u. This is done by means of the local indicators of plurisubharmonic functions introduced in [15]. As a consequence, bounds for the masses are obtained in terms of the directional Lelong numbers of u, and the notion of the Newton number for a holomorphic mapping is extended to arbitrary plurisubharmonic functions. We also describe the local indicator of u as the logarithmic tangent to u.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:208396
@article{bwmeta1.element.bwnjournal-article-apmv75z3p213bwm,
     author = {Rashkovskii, Alexander},
     title = {Newton numbers and residual measures of plurisubharmonic functions},
     journal = {Annales Polonici Mathematici},
     volume = {75},
     year = {2000},
     pages = {213-231},
     zbl = {0966.32022},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv75z3p213bwm}
}
Rashkovskii, Alexander. Newton numbers and residual measures of plurisubharmonic functions. Annales Polonici Mathematici, Tome 75 (2000) pp. 213-231. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv75z3p213bwm/

[000] [1] L. A. Aĭzenberg and Yu. P. Yuzhakov, Integral Representations and Residues in Multidimensional Complex Analysis, Nauka, Novosibirsk, 1979 (in Russian); English transl.: AMS, Providence, RI, 1983.

[001] [2] J.-P. Demailly, Monge-Ampère operators, Lelong numbers and intersection theory, in: Complex Analysis and Geometry, V. Ancona and A. Silva (eds.), Plenum Press, New York, 1993, 115-193. | Zbl 0792.32006

[002] [3] L. Hörmander, Notions of Convexity, Progr. Math. 127, Birkhäuser, 1994.

[003] [4] C. O. Kiselman, Densité des fonctions plurisousharmoniques, Bull. Soc. Math. France 107 (1979), 295-304. | Zbl 0416.32007

[004] [5] C. O. Kiselman, Un nombre de Lelong raffiné, in: Séminaire d'Analyse Complexe et Géométrie 1985-87, Fac. Sci. Monastir, 1987, 61-70.

[005] [6] C. O. Kiselman, Tangents of plurisubharmonic functions, in: International Symposium in Memory of Hua Loo Keng, Vol. II, Science Press and Springer, 1991, 157-167. | Zbl 0810.31006

[006] [7] C. O. Kiselman, Attenuating the singularities of plurisubharmonic functions, Ann. Polon. Math. 60 (1994), 173-197. | Zbl 0827.32016

[007] [8] M. Klimek, Pluripotential Theory, Oxford Univ. Press, London, 1991.

[008] [9] A. G. Kouchnirenko, Newton polyhedron and the number of solutions of a system of k equations with k indeterminates, Uspekhi Mat. Nauk 30 (1975), no. 2, 266-267 (in Russian).

[009] [10] A. G. Kouchnirenko, Polyèdres de Newton et nombres de Milnor, Invent. Math. 32 (1976), 1-31.

[010] [11] S. Lang, Fundamentals of Diophantine Geometry, Springer, New York, 1983. | Zbl 0528.14013

[011] [12] P. Lelong, Plurisubharmonic Functions and Positive Differential Forms, Gordon and Breach, New York, and Dunod, Paris, 1969. | Zbl 0195.11604

[012] [13] P. Lelong, Remarks on pointwise multiplicities, Linear Topol. Spaces Complex Anal. 3 (1997), 112-119. | Zbl 0923.32003

[013] [14] P. Lelong and L. Gruman, Entire Functions of Several Complex Variables, Springer, Berlin, 1986. | Zbl 0583.32001

[014] [15] P. Lelong and A. Rashkovskii, Local indicators for plurisubharmonic functions, J. Math. Pures Appl. 78 (1999), 233-247. | Zbl 0933.32049

[015] [16] J. Rauch and B. A. Taylor, The Dirichlet problem for the multidimensional Monge-Ampère equation, Rocky Mountain J. Math. 7 (1977), 345-364. | Zbl 0367.35025

[016] [17] Y. Xing, Continuity of the complex Monge-Ampère operator, Proc. Amer. Math. Soc. 124 (1996), 457-467. | Zbl 0849.31010