We study the masses charged by at isolated singularity points of plurisubharmonic functions u. This is done by means of the local indicators of plurisubharmonic functions introduced in [15]. As a consequence, bounds for the masses are obtained in terms of the directional Lelong numbers of u, and the notion of the Newton number for a holomorphic mapping is extended to arbitrary plurisubharmonic functions. We also describe the local indicator of u as the logarithmic tangent to u.
@article{bwmeta1.element.bwnjournal-article-apmv75z3p213bwm, author = {Rashkovskii, Alexander}, title = {Newton numbers and residual measures of plurisubharmonic functions}, journal = {Annales Polonici Mathematici}, volume = {75}, year = {2000}, pages = {213-231}, zbl = {0966.32022}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv75z3p213bwm} }
Rashkovskii, Alexander. Newton numbers and residual measures of plurisubharmonic functions. Annales Polonici Mathematici, Tome 75 (2000) pp. 213-231. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv75z3p213bwm/
[000] [1] L. A. Aĭzenberg and Yu. P. Yuzhakov, Integral Representations and Residues in Multidimensional Complex Analysis, Nauka, Novosibirsk, 1979 (in Russian); English transl.: AMS, Providence, RI, 1983.
[001] [2] J.-P. Demailly, Monge-Ampère operators, Lelong numbers and intersection theory, in: Complex Analysis and Geometry, V. Ancona and A. Silva (eds.), Plenum Press, New York, 1993, 115-193. | Zbl 0792.32006
[002] [3] L. Hörmander, Notions of Convexity, Progr. Math. 127, Birkhäuser, 1994.
[003] [4] C. O. Kiselman, Densité des fonctions plurisousharmoniques, Bull. Soc. Math. France 107 (1979), 295-304. | Zbl 0416.32007
[004] [5] C. O. Kiselman, Un nombre de Lelong raffiné, in: Séminaire d'Analyse Complexe et Géométrie 1985-87, Fac. Sci. Monastir, 1987, 61-70.
[005] [6] C. O. Kiselman, Tangents of plurisubharmonic functions, in: International Symposium in Memory of Hua Loo Keng, Vol. II, Science Press and Springer, 1991, 157-167. | Zbl 0810.31006
[006] [7] C. O. Kiselman, Attenuating the singularities of plurisubharmonic functions, Ann. Polon. Math. 60 (1994), 173-197. | Zbl 0827.32016
[007] [8] M. Klimek, Pluripotential Theory, Oxford Univ. Press, London, 1991.
[008] [9] A. G. Kouchnirenko, Newton polyhedron and the number of solutions of a system of k equations with k indeterminates, Uspekhi Mat. Nauk 30 (1975), no. 2, 266-267 (in Russian).
[009] [10] A. G. Kouchnirenko, Polyèdres de Newton et nombres de Milnor, Invent. Math. 32 (1976), 1-31.
[010] [11] S. Lang, Fundamentals of Diophantine Geometry, Springer, New York, 1983. | Zbl 0528.14013
[011] [12] P. Lelong, Plurisubharmonic Functions and Positive Differential Forms, Gordon and Breach, New York, and Dunod, Paris, 1969. | Zbl 0195.11604
[012] [13] P. Lelong, Remarks on pointwise multiplicities, Linear Topol. Spaces Complex Anal. 3 (1997), 112-119. | Zbl 0923.32003
[013] [14] P. Lelong and L. Gruman, Entire Functions of Several Complex Variables, Springer, Berlin, 1986. | Zbl 0583.32001
[014] [15] P. Lelong and A. Rashkovskii, Local indicators for plurisubharmonic functions, J. Math. Pures Appl. 78 (1999), 233-247. | Zbl 0933.32049
[015] [16] J. Rauch and B. A. Taylor, The Dirichlet problem for the multidimensional Monge-Ampère equation, Rocky Mountain J. Math. 7 (1977), 345-364. | Zbl 0367.35025
[016] [17] Y. Xing, Continuity of the complex Monge-Ampère operator, Proc. Amer. Math. Soc. 124 (1996), 457-467. | Zbl 0849.31010