Existence of loops for non-injective regular analytic transformations of the real plane is shown. As an application, a criterion for injectivity of a regular analytic transformation of in terms of the Jacobian and the first and second order partial derivatives is obtained. This criterion is new even in the special case of polynomial transformations.
@article{bwmeta1.element.bwnjournal-article-apmv75z2p99bwm, author = {Gubeladze, Joseph}, title = {Regular analytic transformations of $$\mathbb{R}$^2$ }, journal = {Annales Polonici Mathematici}, volume = {75}, year = {2000}, pages = {99-109}, zbl = {0964.14048}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv75z2p99bwm} }
Gubeladze, Joseph. Regular analytic transformations of $ℝ^2$ . Annales Polonici Mathematici, Tome 75 (2000) pp. 99-109. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv75z2p99bwm/
[000] [BR] A. Białynicki-Birula and M. Rosenlicht, Injective morphisms of real algebraic varieties, Proc. Amer. Math. Soc. 13 (1962), 200-204. | Zbl 0107.14602
[001] [F] W. Fulton, Algebraic Topology (a First Course), Grad. Texts in Math. 153, Springer, 1995.
[002] [Gw] J. Gwoździewicz, The Real Jacobian Conjecture for polynomials of degree 3, preprint, 1999.
[003] [Ha] J. Hadamard, Sur les transformations ponctuelles, Bull. Soc. Math. France 34 (1906), 71-84. | Zbl 37.0672.02
[004] [KR] K. Kurdyka and K. Rusek, Polynomial rational bijections of , Proc. Amer. Math. Soc. 112 (1988), 804-808. | Zbl 0718.13006
[005] [P] S. Pinchuk, A counterexample to the strong real Jacobian conjecture, Math. Z. 217 (1994), 1-4. | Zbl 0874.26008