Regular analytic transformations of 2
Gubeladze, Joseph
Annales Polonici Mathematici, Tome 75 (2000), p. 99-109 / Harvested from The Polish Digital Mathematics Library

Existence of loops for non-injective regular analytic transformations of the real plane is shown. As an application, a criterion for injectivity of a regular analytic transformation of 2 in terms of the Jacobian and the first and second order partial derivatives is obtained. This criterion is new even in the special case of polynomial transformations.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:208394
@article{bwmeta1.element.bwnjournal-article-apmv75z2p99bwm,
     author = {Gubeladze, Joseph},
     title = {Regular analytic transformations of $$\mathbb{R}$^2$
            },
     journal = {Annales Polonici Mathematici},
     volume = {75},
     year = {2000},
     pages = {99-109},
     zbl = {0964.14048},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv75z2p99bwm}
}
Gubeladze, Joseph. Regular analytic transformations of $ℝ^2$
            . Annales Polonici Mathematici, Tome 75 (2000) pp. 99-109. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv75z2p99bwm/

[000] [BR] A. Białynicki-Birula and M. Rosenlicht, Injective morphisms of real algebraic varieties, Proc. Amer. Math. Soc. 13 (1962), 200-204. | Zbl 0107.14602

[001] [F] W. Fulton, Algebraic Topology (a First Course), Grad. Texts in Math. 153, Springer, 1995.

[002] [Gw] J. Gwoździewicz, The Real Jacobian Conjecture for polynomials of degree 3, preprint, 1999.

[003] [Ha] J. Hadamard, Sur les transformations ponctuelles, Bull. Soc. Math. France 34 (1906), 71-84. | Zbl 37.0672.02

[004] [KR] K. Kurdyka and K. Rusek, Polynomial rational bijections of n, Proc. Amer. Math. Soc. 112 (1988), 804-808. | Zbl 0718.13006

[005] [P] S. Pinchuk, A counterexample to the strong real Jacobian conjecture, Math. Z. 217 (1994), 1-4. | Zbl 0874.26008