We study a coincidence problem of the form A(x) ∈ ϕ (x), where A is a linear Fredholm operator with nonnegative index between Banach spaces and ϕ is a multivalued A-fundamentally contractible map (in particular, it is not necessarily compact). The main tool is a coincidence index, which becomes the well known Leray-Schauder fixed point index when A=id and ϕ is a compact singlevalued map. An application to boundary value problems for differential equations in Banach spaces is given.
@article{bwmeta1.element.bwnjournal-article-apmv75z2p143bwm, author = {Gabor, Dorota}, title = {The coincidence index for fundamentally contractible multivalued maps with nonconvex values}, journal = {Annales Polonici Mathematici}, volume = {75}, year = {2000}, pages = {143-166}, zbl = {0969.47041}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv75z2p143bwm} }
Gabor, Dorota. The coincidence index for fundamentally contractible multivalued maps with nonconvex values. Annales Polonici Mathematici, Tome 75 (2000) pp. 143-166. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv75z2p143bwm/
[000] [1] R. R. Akhmerov, M. I. Kamenskiĭ, A. S. Potapov, A. E. Rodkina and B. N. Sadovskiĭ, Measures of Noncompactness and Condensing Operators, Birkhäuser, Basel, 1992.
[001] [2] S. Armentrout and T. M. Price, Decomposition into compact sets with UV properties, Trans. Amer. Math. Soc. 141 (1969), 433-442. | Zbl 0183.27902
[002] [3] Yu. G. Borisovich, B. D. Gel'man, A. D. Myshkis and V. V. Obukhovskiĭ, Topological methods in the fixed point theory of multivalued mappings, Russian Math. Surveys 35 (1980), 65-143.
[003] [4] Yu. G. Borisovich, V. G. Zvyagin and Yu. I. Sapronov, Nonlinear Fredholm mappings and Leray-Schauder theory, ibid. 32 (1977), 3-54.
[004] [5] K. Gęba, Algebraic topology methods in the theory of compact fields in Banach spaces, Fund. Math. 46 (1964), 177-209.
[005] [6] K. Gęba, I. Massabò and A. Vignoli, Generalized topological degree and bifurcation, in: Nonlinear Functional Analysis and its Applications (Maratea, 1985), Reidel, 1986, 55-73.
[006] [7] S. Goldberg, Unbounded Linear Operators. Theory and Applications, McGraw-Hill, 1966. | Zbl 0148.12501
[007] [8] L. Górniewicz, Homological methods in fixed-point theory of multi-valued maps, Dissertationes Math. 129 (1976). | Zbl 0324.55002
[008] [9] L. Górniewicz and W. Kryszewski, Bifurcation invariants for acyclic mappings, Rep. Math. Phys. 31 (1992), 217-239. | Zbl 0831.55001
[009] [10] J. Izé, I. Massabò and A. Vignoli, Degree theory for equivariant maps I, Trans. Amer. Math. Soc. 315 (1989), 433-510. | Zbl 0695.58006
[010] [11] J. L. Kelley, General Topology, Van Nostrand, New York, 1955.
[011] [12] W. Kryszewski, Homotopy properties of set-valued mappings, Wyd. Uniwersytetu Mikołaja Kopernika, Toruń, 1997. | Zbl 1250.54022
[012] [13] W. Kryszewski, Topological and approximation methods in the degree theory of set-valued maps, Dissertationes Math. 336 (1994). | Zbl 0832.55004
[013] [14] W. Kryszewski, The fixed-point index for the class of compositions of acyclic set-valued maps on ANR's, Bull. Sci. Math. 120 (1996), 129-151. | Zbl 0858.55002
[014] [15] W. Kryszewski, Remarks to the Vietoris Theorem, Topol. Methods Nonlinear Anal. 8 (1996), 383-405. | Zbl 0891.55024
[015] [16] R. C. Lacher, Cell-like mappings and their generalizations, Bull. Amer. Math. Soc. 83 (1977), 336-552. | Zbl 0364.54009
[016] [17] J. Mawhin, Topological Degree Methods in Nonlinear Boundary Value Problems, CBMS Regional Conf. Ser. in Math. 40, Amer. Math. Soc., Providence, 1979.
[017] [18] T. Pruszko, Some applications of the topological degree theory to multi-valued boundary value problems, Dissertationes Math. 229 (1984). | Zbl 0543.34008