The coincidence index for fundamentally contractible multivalued maps with nonconvex values
Gabor, Dorota
Annales Polonici Mathematici, Tome 75 (2000), p. 143-166 / Harvested from The Polish Digital Mathematics Library

We study a coincidence problem of the form A(x) ∈ ϕ (x), where A is a linear Fredholm operator with nonnegative index between Banach spaces and ϕ is a multivalued A-fundamentally contractible map (in particular, it is not necessarily compact). The main tool is a coincidence index, which becomes the well known Leray-Schauder fixed point index when A=id and ϕ is a compact singlevalued map. An application to boundary value problems for differential equations in Banach spaces is given.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:208391
@article{bwmeta1.element.bwnjournal-article-apmv75z2p143bwm,
     author = {Gabor, Dorota},
     title = {The coincidence index for fundamentally contractible multivalued maps with nonconvex values},
     journal = {Annales Polonici Mathematici},
     volume = {75},
     year = {2000},
     pages = {143-166},
     zbl = {0969.47041},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv75z2p143bwm}
}
Gabor, Dorota. The coincidence index for fundamentally contractible multivalued maps with nonconvex values. Annales Polonici Mathematici, Tome 75 (2000) pp. 143-166. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv75z2p143bwm/

[000] [1] R. R. Akhmerov, M. I. Kamenskiĭ, A. S. Potapov, A. E. Rodkina and B. N. Sadovskiĭ, Measures of Noncompactness and Condensing Operators, Birkhäuser, Basel, 1992.

[001] [2] S. Armentrout and T. M. Price, Decomposition into compact sets with UV properties, Trans. Amer. Math. Soc. 141 (1969), 433-442. | Zbl 0183.27902

[002] [3] Yu. G. Borisovich, B. D. Gel'man, A. D. Myshkis and V. V. Obukhovskiĭ, Topological methods in the fixed point theory of multivalued mappings, Russian Math. Surveys 35 (1980), 65-143.

[003] [4] Yu. G. Borisovich, V. G. Zvyagin and Yu. I. Sapronov, Nonlinear Fredholm mappings and Leray-Schauder theory, ibid. 32 (1977), 3-54.

[004] [5] K. Gęba, Algebraic topology methods in the theory of compact fields in Banach spaces, Fund. Math. 46 (1964), 177-209.

[005] [6] K. Gęba, I. Massabò and A. Vignoli, Generalized topological degree and bifurcation, in: Nonlinear Functional Analysis and its Applications (Maratea, 1985), Reidel, 1986, 55-73.

[006] [7] S. Goldberg, Unbounded Linear Operators. Theory and Applications, McGraw-Hill, 1966. | Zbl 0148.12501

[007] [8] L. Górniewicz, Homological methods in fixed-point theory of multi-valued maps, Dissertationes Math. 129 (1976). | Zbl 0324.55002

[008] [9] L. Górniewicz and W. Kryszewski, Bifurcation invariants for acyclic mappings, Rep. Math. Phys. 31 (1992), 217-239. | Zbl 0831.55001

[009] [10] J. Izé, I. Massabò and A. Vignoli, Degree theory for equivariant maps I, Trans. Amer. Math. Soc. 315 (1989), 433-510. | Zbl 0695.58006

[010] [11] J. L. Kelley, General Topology, Van Nostrand, New York, 1955.

[011] [12] W. Kryszewski, Homotopy properties of set-valued mappings, Wyd. Uniwersytetu Mikołaja Kopernika, Toruń, 1997. | Zbl 1250.54022

[012] [13] W. Kryszewski, Topological and approximation methods in the degree theory of set-valued maps, Dissertationes Math. 336 (1994). | Zbl 0832.55004

[013] [14] W. Kryszewski, The fixed-point index for the class of compositions of acyclic set-valued maps on ANR's, Bull. Sci. Math. 120 (1996), 129-151. | Zbl 0858.55002

[014] [15] W. Kryszewski, Remarks to the Vietoris Theorem, Topol. Methods Nonlinear Anal. 8 (1996), 383-405. | Zbl 0891.55024

[015] [16] R. C. Lacher, Cell-like mappings and their generalizations, Bull. Amer. Math. Soc. 83 (1977), 336-552. | Zbl 0364.54009

[016] [17] J. Mawhin, Topological Degree Methods in Nonlinear Boundary Value Problems, CBMS Regional Conf. Ser. in Math. 40, Amer. Math. Soc., Providence, 1979.

[017] [18] T. Pruszko, Some applications of the topological degree theory to multi-valued boundary value problems, Dissertationes Math. 229 (1984). | Zbl 0543.34008