We study eigenvalue problems with discontinuous terms. In particular we consider two problems: a nonlinear problem and a semilinear problem for elliptic equations. In order to study the existence of solutions we replace these two problems with their multivalued approximations and, for the first problem, we estabilish an existence result while for the second problem we prove the existence of multiple nontrivial solutions. The approach used is variational.
@article{bwmeta1.element.bwnjournal-article-apmv75z2p125bwm, author = {Papageorgiou, Nikolaos and Papalini, Francesca}, title = {Existence and multiplicity results for nonlinear eigenvalue problems with discontinuities}, journal = {Annales Polonici Mathematici}, volume = {75}, year = {2000}, pages = {125-141}, zbl = {1050.35061}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv75z2p125bwm} }
Papageorgiou, Nikolaos; Papalini, Francesca. Existence and multiplicity results for nonlinear eigenvalue problems with discontinuities. Annales Polonici Mathematici, Tome 75 (2000) pp. 125-141. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv75z2p125bwm/
[000] [1] A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical theory and applications, J. Funct. Anal. 14 (1973), 349-381. | Zbl 0273.49063
[001] [2] H. Brezis, Analyse fonctionnelle. Théorie et applications, Masson, 1983.
[002] [3] K. J. Brown and H. Budin, On the existence of positive solutions for a class of semilinear elliptic boundary value problems, SIAM J. Math. Anal. 10 (1979), 875-883. | Zbl 0414.35029
[003] [4] G. Cerami, Un criterio di esistenza per i punti critici su varietà illimitate, Rend. Istit. Lombardo Sci. Lett. 112 (1978), 332-336.
[004] [5] K.-C. Chang, Variational methods for non-differentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl. 80 (1981), 102-129. | Zbl 0487.49027
[005] [6] F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983. | Zbl 0582.49001
[006] [7] D. G. Costa and C. A. Magalhães, Existence results for perturbations of the p-Laplacian, Nonlinear Anal. 24 (1995), 409-418. | Zbl 0818.35029
[007] [8] D. G. De Figueiredo, On the existence of multiple ordered solutions of nonlinear eigenvalue problems, ibid. 11 (1987), 481-492. | Zbl 0661.35070
[008] [9] D. Goeleven, D. Motreanu and P. D. Panagiotopoulos, Multiple solutions for a class of eigenvalue problems in hemivariational inequalities, ibid. 29 (1997), 9-26. | Zbl 0878.49009
[009] [10] P. Hess, On multiple positive solutions of nonlinear elliptic eigenvalue problems, Comm. Partial Differential Equations 6 (1981), 951-961. | Zbl 0468.35073
[010] [11] N. C. Kurogenis and N. S. Papageorgiou, Nonsmooth critical point theory and nonlinear elliptic equations at resonance, to appear.
[011] [12] C. Lefter and D. Motreanu, Critical Points Methods in Nonlinear Eigenvalue Problems with Discontinuities, Internat. Ser. Numer. Math. 107, Birkhäuser, Basel, 1992. | Zbl 0802.35115
[012] [13] P. Lindqvist, On the equations , Proc. Amer. Math. Soc. 109 (1990), 157-164.
[013] [14] P. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Partial Differential Equations, CBMS Regional Conf. Ser. in Math. 65, Amer. Math. Soc., Providence, RI, 1986. | Zbl 0609.58002
[014] [15] M. Ramos, A critical point theorem suggested by an elliptic problem with asymmetric nonlinearities, J. Math. Anal. Appl. 196 (1995), 938-946. | Zbl 0853.58032
[015] [16] E. Zeidler, Nonlinear Functional Analysis and its Applications, Springer, New York, 1985. | Zbl 0583.47051