A new criterion for the existence of an invariant distribution for Markov operators is presented. Moreover, it is also shown that the unique invariant distribution of an iterated function system is singular with respect to the Hausdorff measure.
@article{bwmeta1.element.bwnjournal-article-apmv75z1p87bwm, author = {Szarek, Tomasz}, title = {Invariant measures for iterated function systems}, journal = {Annales Polonici Mathematici}, volume = {75}, year = {2000}, pages = {87-98}, zbl = {0976.47005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv75z1p87bwm} }
Szarek, Tomasz. Invariant measures for iterated function systems. Annales Polonici Mathematici, Tome 75 (2000) pp. 87-98. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv75z1p87bwm/
[000] [1] Arbeiter M. and Patzschke N., Random self-similar multifractals, Math. Nachr. 181 (1996), 5-42. | Zbl 0873.28003
[001] [2] Dudley R. M., Probabilities and Matrices, Aarhus Universitet, 1976. | Zbl 0355.60004
[002] [3] Falconer K. J., Fractal Geometry: Mathematical Foundations and Applications, Wiley, New York, 1990.
[003] [4] Falconer K. J. , The Geometry of Fractal Sets, Cambridge Univ. Press, Cambridge, 1985. | Zbl 0587.28004
[004] [5] R. Fortet et Mourier B., Convergence de la répartition empirique vers la répartition théorétique, Ann. Sci. École Norm. Sup. 70 (1953), 267-285. | Zbl 0053.09601
[005] [6] Geronimo J. S. and Hardin D. P., An exact formula for the measure dimensions associated with a class of piecewise linear maps, Constr. Approx. 5 (1989), 89-98. | Zbl 0666.28004
[006] [7] Hata M., On the structure of self-similar sets, Japan J. Appl. Math. 2 (1985), 381-414. | Zbl 0608.28003
[007] [8] Hutchinson J. E., Fractals and self-similarities, Indiana Univ. Math. J. 30 (1981), 713-747. | Zbl 0598.28011
[008] [9] Lasota A. and Myjak J., Generic properties of fractal measures, Bull. Polish Acad. Sci. Math. 42 (1994), 283-296. | Zbl 0851.28004
[009] [10] Lasota A. and Myjak J., Semifractals on Polish spaces, ibid. 46 (1998), 179-196. | Zbl 0921.28007
[010] [11] Lasota A. and Yorke J. A., Lower bound technique for Markov operators and iterated function systems, Random Comput. Dynam. 2 (1994), 41-77. | Zbl 0804.47033
[011] [12] Szarek T., Markov operators acting on Polish spaces, Ann. Polon. Math. 67 (1997), 247-257. | Zbl 0903.60052