Let V, W be algebraic subsets of , respectively, with n ≤ m. It is known that any finite polynomial mapping f: V → W can be extended to a finite polynomial mapping The main goal of this paper is to estimate from above the geometric degree of a finite extension of a dominating mapping f: V → W, where V and W are smooth algebraic sets.
@article{bwmeta1.element.bwnjournal-article-apmv75z1p79bwm, author = {Kara\'s, Marek}, title = {Finite extensions of mappings from a smooth variety}, journal = {Annales Polonici Mathematici}, volume = {75}, year = {2000}, pages = {79-86}, zbl = {0962.14036}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv75z1p79bwm} }
Karaś, Marek. Finite extensions of mappings from a smooth variety. Annales Polonici Mathematici, Tome 75 (2000) pp. 79-86. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv75z1p79bwm/
[000] [1] S. S. Abhyankar, On the Semigroup of a Meromorphic Curve, Kinokuniya Book-Store, Tokyo, 1978.
[001] [2] Z. Jelonek, The extension of regular and rational embeddings, Math. Ann. 277 (1987), 113-120. | Zbl 0611.14010
[002] [3] M. Karaś, An estimation of the geometric degree of an extension of some polynomial proper mappings, Univ. Iagell. Acta Math. 35 (1997), 131-135. | Zbl 0948.14015
[003] [4] M. Karaś, Geometric degree of finite extensions of projections, ibid. 37 (1999), 109-119. | Zbl 0989.14020
[004] [5] M. Karaś, Birational finite extensions, J. Pure Appl. Algebra 148 (2000), 251-253. | Zbl 1014.14003
[005] [6] M. Kwieciński, Extending finite mappings to affine space, ibid. 76 (1991), 151-153. | Zbl 0753.14002
[006] [7] D. Mumford, Algebraic Geometry I. Complex Projective Varieties, Springer, Heidelberg, 1976. | Zbl 0356.14002
[007] [8] K. J. Nowak, The extension of holomorphic functions of polynomial growth on algebraic sets in , Univ. Iagell. Acta Math. 28 (1991), 19-28.
[008] [9] I. R. Shafarevich, Basic Algebraic Geometry, Springer, Heidelberg, 1974. | Zbl 0284.14001