In [O2] the Cartan-Norden theorem for real affine immersions was proved without the non-degeneracy assumption. A similar reasoning applies to the case of affine Kähler immersions with an anti-complex shape operator, which allows us to weaken the assumptions of the theorem given in [NP]. We need only require the immersion to have a non-vanishing type number everywhere on M.
@article{bwmeta1.element.bwnjournal-article-apmv75z1p69bwm, author = {Robaszewska, Maria}, title = {On the Cartan-Norden theorem for affine K\"ahler immersions}, journal = {Annales Polonici Mathematici}, volume = {75}, year = {2000}, pages = {69-77}, zbl = {1017.53055}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv75z1p69bwm} }
Robaszewska, Maria. On the Cartan-Norden theorem for affine Kähler immersions. Annales Polonici Mathematici, Tome 75 (2000) pp. 69-77. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv75z1p69bwm/
[000] [NPP] K. Nomizu, U. Pinkall and F. Podesta, On the geometry of affine Kähler immersions, Nagoya Math. J. 120 (1990), 205-222. | Zbl 0701.53038
[001] [NP] K. Nomizu and F. Podesta, On the Cartan-Norden theorem for affine Kähler immersions, Nagoya Math. J. 121 (1991), 127-135. | Zbl 0719.53029
[002] [O1] B. Opozda, On some properties of the curvature and Ricci tensors in complex affine geometry, Geom. Dedicata 55 (1995), 141-163. | Zbl 0840.53009
[003] [O2] B. Opozda, On the Cartan-Norden theorem, Math. Z. 226 (1997), 309-316. | Zbl 0973.53510