Some inequalities are proved for coefficients of functions in the class P(α), where α ∈ [0,1), of functions with real part greater than α. In particular, new inequalities for coefficients in the Carathéodory class P(0) are given.
@article{bwmeta1.element.bwnjournal-article-apmv75z1p59bwm, author = {Lecko, Adam}, title = {On coefficient inequalities in the Carath\'eodory class of functions}, journal = {Annales Polonici Mathematici}, volume = {75}, year = {2000}, pages = {59-67}, zbl = {0967.30008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv75z1p59bwm} }
Lecko, Adam. On coefficient inequalities in the Carathéodory class of functions. Annales Polonici Mathematici, Tome 75 (2000) pp. 59-67. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv75z1p59bwm/
[000] [1] C. Carathéodory, Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen, Math. Ann. 64 (1907), 95-115. | Zbl 38.0448.01
[001] [2] A. W. Goodman, Univalent Functions, Mariner, Tampa, FL 1983.
[002] [3] Z. J. Jakubowski and J. Stankiewicz, On some classes of functions with the special normalizations, Folia Sci. Univ. Tech. Res. 73 (1990), 29-48. | Zbl 0747.30007
[003] [4] M. S. Robertson, On the theory of univalent functions, Ann. of Math. 37 (1936), 374-408. | Zbl 62.0373.05
[004] [5] M. S. Robertson, Univalent functions starlike with respect to a boundary point, J. Math. Anal. Appl. 81 (1981), 327-345. | Zbl 0472.30015