On coefficient inequalities in the Carathéodory class of functions
Lecko, Adam
Annales Polonici Mathematici, Tome 75 (2000), p. 59-67 / Harvested from The Polish Digital Mathematics Library

Some inequalities are proved for coefficients of functions in the class P(α), where α ∈ [0,1), of functions with real part greater than α. In particular, new inequalities for coefficients in the Carathéodory class P(0) are given.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:208384
@article{bwmeta1.element.bwnjournal-article-apmv75z1p59bwm,
     author = {Lecko, Adam},
     title = {On coefficient inequalities in the Carath\'eodory class of functions},
     journal = {Annales Polonici Mathematici},
     volume = {75},
     year = {2000},
     pages = {59-67},
     zbl = {0967.30008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv75z1p59bwm}
}
Lecko, Adam. On coefficient inequalities in the Carathéodory class of functions. Annales Polonici Mathematici, Tome 75 (2000) pp. 59-67. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv75z1p59bwm/

[000] [1] C. Carathéodory, Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen, Math. Ann. 64 (1907), 95-115. | Zbl 38.0448.01

[001] [2] A. W. Goodman, Univalent Functions, Mariner, Tampa, FL 1983.

[002] [3] Z. J. Jakubowski and J. Stankiewicz, On some classes of functions with the special normalizations, Folia Sci. Univ. Tech. Res. 73 (1990), 29-48. | Zbl 0747.30007

[003] [4] M. S. Robertson, On the theory of univalent functions, Ann. of Math. 37 (1936), 374-408. | Zbl 62.0373.05

[004] [5] M. S. Robertson, Univalent functions starlike with respect to a boundary point, J. Math. Anal. Appl. 81 (1981), 327-345. | Zbl 0472.30015