How to get rid of one of the weights in a two-weight Poincaré inequality?
Franchi, Bruno ; Hajłasz, Piotr
Annales Polonici Mathematici, Tome 75 (2000), p. 97-103 / Harvested from The Polish Digital Mathematics Library

We prove that if a Poincaré inequality with two different weights holds on every ball, then a Poincaré inequality with the same weight on both sides holds as well.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:208379
@article{bwmeta1.element.bwnjournal-article-apmv74z1p97bwm,
     author = {Franchi, Bruno and Haj\l asz, Piotr},
     title = {How to get rid of one of the weights in a two-weight Poincar\'e inequality?},
     journal = {Annales Polonici Mathematici},
     volume = {75},
     year = {2000},
     pages = {97-103},
     zbl = {0965.46021},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv74z1p97bwm}
}
Franchi, Bruno; Hajłasz, Piotr. How to get rid of one of the weights in a two-weight Poincaré inequality?. Annales Polonici Mathematici, Tome 75 (2000) pp. 97-103. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv74z1p97bwm/

[000] [1] D. Bakry, T. Coulhon, M. Ledoux and L. Saloff-Coste, Sobolev inequalities in disguise, Indiana Univ. Math. J. 44 (1995), 1033-1074.

[001] [2] M. Biroli and U. Mosco, Sobolev inequalities on homogeneous spaces, Potential Anal. 4 (1995), 311-324. | Zbl 0833.46020

[002] [3] B. Bojarski, Remarks on Sobolev imbedding inequalities, in: Complex Analysis (Joensuu, 1987), Lecture Notes in Math. 1351, Springer 1988, 52-68.

[003] [4] J. Boman, Lp-estimates for very strongly elliptic systems, report no 29, Dept. of Math., Univ. of Stockholm, 1982.

[004] [5] S. M. Buckley, P. Koskela and G. Lu, Boman equals John, in: XVI Rolf Nevanlinna Colloquium (Joensuu,1995), de Gruyter, Berlin, 1996, 91-99.

[005] [6] L. Capogna, D. Danielli and N. Garofalo, Subelliptic mollifiers and a basic pointwise estimate of Poincaré type, Math. Z. 226 (1997), 147-154. | Zbl 0893.35023

[006] [7] S. K. Chua, Weighted Sobolev inequalities on domains satisfying the chain condition, Proc. Amer. Math. Soc. 117 (1993), 449-457. | Zbl 0812.46020

[007] [8] B. Franchi, Weighted Sobolev-Poincaré inequalities and pointwise inequalities for a class of degenerate elliptic equations, Trans. Amer. Math. Soc. 327 (1991), 125-158. | Zbl 0751.46023

[008] [9] B. Franchi, C. E. Gutiérrez and R. L. Wheeden, Weighted Sobolev-Poincaré inequalities for Grushin type operators, Comm. Partial Differential Equations 19 (1994), 523-604. | Zbl 0822.46032

[009] [10] B. Franchi, P. Hajłasz and P. Koskela, Definitions of Sobolev classes on metric spaces, Ann. Inst. Fourier (Grenoble) 49 (1999), 1903-1924. | Zbl 0938.46037

[010] [11] B. Franchi and E. Lanconelli, Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa 10 (1983), 523-541. | Zbl 0552.35032

[011] [12] B. Franchi, G. Lu and R. L. Wheeden, Representation formulas and weighted Poincaré inequalities for Hörmander vector fields, Ann. Inst. Fourier (Grenoble) 45 (1995), 577-604. | Zbl 0820.46026

[012] [13] B. Franchi, G. Lu and R. L. Wheeden, A relationship between Poincaré-type inequalities and representation formulas in spaces of homogeneous type, Internat. Mat. Res. Notices 1996, no. 1, 1-14. | Zbl 0856.43006

[013] [14] B. Franchi, C. Pérez and R. L. Wheeden, Self-improving properties of John-Nirenberg and Poincaré inequalities on spaces of homogeneous type, J. Funct. Anal. 153 (1998), 108-146. | Zbl 0892.43005

[014] [15] B. Franchi, C. Pérez and R. L. Wheeden, in preparation.

[015] [16] B. Franchi and R. L. Wheeden, Some remarks about Poincaré type inequalities and representation formulas in metric spaces of homogeneous type, J. Inequalities Appl. 3 (1999), 65-89 | Zbl 0934.46037

[016] [17] B. Franchi and R. L. Wheeden, Compensation couples and isoperimetric estimates for vector fields, Colloq. Math. 74 (1997), 1-27. | Zbl 0915.46028

[017] [18] J. García Cuerva and J. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland, Math. Stud. 116, North-Holland, 1985.

[018] [19] N. Garofalo and D. M. Nhieu, Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math. 49 (1996), 1081-1144. | Zbl 0880.35032

[019] [20] P. Hajłasz, Sobolev spaces on an arbitrary metric space, Potential Anal. 5 (1996), 403-415. | Zbl 0859.46022

[020] [21] P. Hajłasz and P. Koskela, Sobolev meets Poincaré, C. R. Acad. Sci. Paris 320 (1995), 1211-1215. | Zbl 0837.46024

[021] [22] P. Hajłasz and P. Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc. 145 (2000). | Zbl 0954.46022

[022] [23] D. Jerison, The Poincaré inequality for vector fields satisfying Hörmander's condition, Duke Math. J. 53 (1986), 503-523. | Zbl 0614.35066

[023] [24] R. V. Kohn, New integral estimates for the deformations in terms of their nonlinear strains, Arch. Rational Mech. Anal. 78 (1982), 131-172. | Zbl 0491.73023

[024] [25] E. Lanconelli and D. Morbidelli, On the Poincaré inequality for vector fields, Ark. Mat. 38 (2000), 327-342. | Zbl 1131.46304

[025] [26] G. Lu, Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander's condition and applications, Rev. Mat. Iberoamericana 8 (1992), 367-439. | Zbl 0804.35015

[026] [27] G. Lu, The sharp Poincaré inequality for free vector fields: an endpoint result, ibid. 10 (1994), 453-466. | Zbl 0860.35006

[027] [28] P. Maheux et L. Saloff-Coste, Analyse sur les boules d'un opérateur sous-elliptique, Math. Ann. 303 (1995), 713-740.

[028] [29] L. Saloff-Coste, A note on Poincaré, Sobolev, and Harnack inequalities, Internat. Mat. Res. Notices 1992, no. 2, 27-38. | Zbl 0769.58054