We study solutions to a nonlinear parabolic convection-diffusion equation on the half-line with the Neumann condition at x=0. The analysis is based on the properties of self-similar solutions to that problem.
@article{bwmeta1.element.bwnjournal-article-apmv74z1p79bwm, author = {Biler, Piotr and Karch, Grzegorz}, title = {A Neumann problem for a convection-diffusion equation on the half-line}, journal = {Annales Polonici Mathematici}, volume = {75}, year = {2000}, pages = {79-95}, zbl = {1003.35065}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv74z1p79bwm} }
Biler, Piotr; Karch, Grzegorz. A Neumann problem for a convection-diffusion equation on the half-line. Annales Polonici Mathematici, Tome 75 (2000) pp. 79-95. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv74z1p79bwm/
[000] [1] H. Brezis, L. A. Peletier and D. Terman, A very singular solution of the heat equation with absorption, Arch. Rational Mech. Anal. 95 (1986), 185-209. | Zbl 0627.35046
[001] [2] S. Claudi, Asymptotic behaviour for a diffusion-convection equation with rapidly decreasing initial data, Adv. Differential Equations 3 (1998), 361-386. | Zbl 0954.35088
[002] [3] S. Claudi and F. R. Guarguaglini, Large time behavior for the heat equation with absorption and convection, Adv. Appl. Math. 16 (1995), 377-401. | Zbl 0856.35059
[003] [4] S. Claudi, R. Natalini and A. Tesei, Large time behaviour of a diffusion equation with strong convection, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 3 (1994), 445-474. | Zbl 0816.35049
[004] [5] M. Escobedo, J. L. Vázquez and E. Zuazua, Asymptotic behaviour and source-type solutions for a diffusion-convection equation, Arch. Rational Mech. Anal. 124 (1993), 43-65. | Zbl 0807.35059
[005] [6] M. Escobedo, J. L. Vázquez and E. Zuazua, A diffusion-convection equation in several space dimensions, Indiana Univ. Math. J. 42 (1993), 1413-1440. | Zbl 0791.35059
[006] [7] M. Escobedo and E. Zuazua, Large time behavior for convection-diffusion equations in , J. Funct. Anal. 100 (1991), 119-161. | Zbl 0762.35011
[007] [8] M. Guedda, Self-similar solutions to a convection-diffusion process, Electron. J. Qual. Theory Differ. Equ. 2000, no. 3, 17 pp.
[008] [9] L. Herraiz, Asymptotic behaviour of solutions of some semilinear parabolic problems, Ann. Inst. H. Poincaré Anal. Non Linéaire 16 (1999), 49-105. | Zbl 0918.35025
[009] [10] S. Kaplan, On the growth of solutions of quasi-linear parabolic equations, Comm. Pure Appl. Math. 16 (1963), 305-330. | Zbl 0156.33503
[010] [11] G. Karch, Large-time behavior of solutions to nonlinear wave equations: higher-order asymptotics, Math. Methods Appl. Sci. 22 (1999), 1671-1697. | Zbl 0947.35141
[011] [12] G. Karch, Asymptotics of solutions to a convection-diffusion equation on the half-line, Proc. Roy. Soc. Edinburgh Sect. A 130 (2000), 837-853. | Zbl 0959.35021
[012] [13] L. A. Peletier and H. C. Serafini, A very singular solution and other self-similar solutions of the heat equation with convection, Nonlinear Anal. 24 (1995), 29-49. | Zbl 0824.35058