For a germ (X,0) of normal complex space of dimension n + 1 with an isolated singularity at 0 and a germ f: (X,0) → (ℂ,0) of holomorphic function with df(x) ≤ 0 for x ≤ 0, the fibre-integrals , are on ℂ* and have an asymptotic expansion at 0. Even when f is singular, it may happen that all these fibre-integrals are . We study such maps and build a family of examples where also fibre-integrals for , the Grothendieck sheaf, are .
@article{bwmeta1.element.bwnjournal-article-apmv74z1p65bwm, author = {Barlet, D. and Maire, H.}, title = {Singular holomorphic functions for which all fibre-integrals are smooth}, journal = {Annales Polonici Mathematici}, volume = {75}, year = {2000}, pages = {65-77}, zbl = {0961.32012}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv74z1p65bwm} }
Barlet, D.; Maire, H. Singular holomorphic functions for which all fibre-integrals are smooth. Annales Polonici Mathematici, Tome 75 (2000) pp. 65-77. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv74z1p65bwm/
[00000] [A-G-Z-V] V. I. Arnold, S. M. Gusein-Zade and A. N. Varchenko, Singularities of Differentiable Maps II, Birkhäuser, 1988.
[00001] [B 78] D. Barlet, Le faisceau sur un espace analytique X de dimension pure, in: Lecture Notes in Math. 670, Springer, 1978, 187-204.
[00002] [B 84] D. Barlet, Contribution effective de la monodromie aux développements asymptotiques, Ann. Sci. Ecole Norm. Sup. 17 (1984), 293-315. | Zbl 0542.32003
[00003] [B 85] D. Barlet, Forme hermitienne canonique sur la cohomologie de la fibre de Milnor d'une hypersurface à singularité isolée, Invent. Math. 81 (1985), 115-153. | Zbl 0574.32011
[00004] [B-M 89] D. Barlet and H.-M. Maire, Asymptotic expansion of complex integrals via Mellin transform, J. Funct. Anal. 83 (1989), 233-257. | Zbl 0707.32003
[00005] [B-M 99] D. Barlet and H.-M. Maire, Poles of the current over an isolated singularity, Internat. J. Math. (2000) (to appear).
[00006] [L] F. Loeser, Quelques conséquences locales de la théorie de Hodge, Ann. Inst. Fourier (Grenoble) 35 (1985), no. 1, 75-92. | Zbl 0862.32020