We give an algebraic description of (wave) fronts that appear in strictly hyperbolic Cauchy problems. A concrete form of a defining function of the wave front issued from the initial algebraic variety is obtained with the aid of Gauss-Manin systems satisfied by Leray's residues.
@article{bwmeta1.element.bwnjournal-article-apmv74z1p275bwm, author = {Tanab\'e, Susumu}, title = {Hyperbolic Cauchy problem and Leray's residue formula}, journal = {Annales Polonici Mathematici}, volume = {75}, year = {2000}, pages = {275-290}, zbl = {0964.35091}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv74z1p275bwm} }
Tanabé, Susumu. Hyperbolic Cauchy problem and Leray's residue formula. Annales Polonici Mathematici, Tome 75 (2000) pp. 275-290. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv74z1p275bwm/
[000] [1] A. G. Aleksandrov and S. Tanabé, Gauss-Manin connexions, logarithmic forms and hypergeometric functions, in: Geometry from the Pacific Rim (Singapore, 1994), de Gruyter, 1997, 1-21. | Zbl 0888.32017
[001] [2] P. Appel et J. Kampé de Fériet, Fonctions hypergéometriques et hypersphériques, Gauthier-Villars, Paris, 1926.
[002] [3] E. Brieskorn, Die Monodromie der isolierten Singularitäten von Hyperflächen, Manuscripta Math. 2 (1970), 103-161. | Zbl 0186.26101
[003] [4] L. Gårding, Sharp fronts of paired oscillatory integrals, Publ. RIMS Kyoto Univ. 12 suppl. (1977), 53-68.
[004] [5] G.-M. Greuel, Der Gauß-Manin Zusammenhang isolierter Singularitäten von vollständigen Durchschnitten, Math. Ann. 214 (1975), 235-266. | Zbl 0285.14002
[005] [6] G.-M. Greuel und H. Hamm, Invarianten quasihomogener vollständiger Durchschnitten, Invent. Math. 49 (1978), 67-86.
[006] [7] Y. Hamada, The singularities of the solutions of the Cauchy problem, Publ. RIMS Kyoto Univ. 5 (1969), 21-40. | Zbl 0203.40702
[007] [8] Y. Hamada, J. Leray et C. Wagschal, Systèmes d'équations aux dérivées partielles à caractéristiques multiples: problème de Cauchy ramifié, hyperbolicité partielle, J. Math. Pures Appl. 55 (1976), 297-352. | Zbl 0307.35056
[008] [9] L. Hörmander, The Analysis of Linear Partial Differential Operators, Vol. I, Springer, 1984.
[009] [10] E. Leichtnam, Le problème de Cauchy ramifié linéaire pour des données à singularités algébriques, Mem. Soc. Math. France 53 (1993). | Zbl 0819.35007
[010] [11] Kh. M. Malikov, Overdeterminacy of the differential systems for versal integrals of type A, D, E, Differentsial'nye Uravneniya 18 (1982), 1394-1400 (in Russian).
[011] [12] V. P. Palamodov, Deformations of complex spaces, in: Several Complex Variables IV, Encyclopedia Math. Sci. 10, Springer, 1990, 105-194.
[012] [13] I. G. Petrovskiĭ, On the diffusion of waves and the lacunas for hyperbolic equations, Mat. Sb. 17 (1945), 289-370.
[013] [14] F. Pham, Introduction à l'étude topologique des singularités de Landau, Gauthier-Villars, 1967.
[014] [15] S. Tanabé, Lagrangian variety and the condition for the presence of sharp front of the fundamental solution to Cauchy problem, Sci. Papers College Arts Sci. Univ. Tokyo, 42 (1992), 149-159. | Zbl 0802.35092
[015] [16] S. Tanabé, Transformée de Mellin des intégrales fibres de courbe espace associées aux singularités isolées d'intersection complète quasihomogènes, Compositio Math., to appear.
[016] [17] S. Tanabé, Connexion de Gauss-Manin associée à la déformation verselle des singularités isolées d'hypersurface et son application au XVIe problème de Hilbert, preprint.
[017] [18] S. Tanabé, On geometry of fronts in wave propagations, in: Geometry and Topology of Caustics-Caustics'98, Banach Center Publ. 50, Inst. Math., Polish Acad. Sci., 1999, 287-304. | Zbl 0951.35074
[018] [19] V. A. Vassiliev, Ramified Integrals, Singularities and Lacunas, Kluwer, Dordrecht, 1995.
[019] [20] B. Ziemian, Leray residue formula and asymptotics of solutions to constant coefficient PDEs, Topol. Methods Nonlinear Anal. 3 (1994), 257-293. | Zbl 0813.47060