Some constructive applications of Λ2-representations to integration of PDEs
Popov, A. ; Zadadaev, S.
Annales Polonici Mathematici, Tome 75 (2000), p. 261-274 / Harvested from The Polish Digital Mathematics Library

Two new applications of Λ2-representations of PDEs are presented: 1. Geometric algorithms for numerical integration of PDEs by constructing planimetric discrete nets on the Lobachevsky plane Λ2. 2. Employing Λ2-representations for the spectral-evolutionary problem for nonlinear PDEs within the inverse scattering problem method.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:208370
@article{bwmeta1.element.bwnjournal-article-apmv74z1p261bwm,
     author = {Popov, A. and Zadadaev, S.},
     title = {Some constructive applications of $$\Lambda$^{2}$-representations to integration of PDEs},
     journal = {Annales Polonici Mathematici},
     volume = {75},
     year = {2000},
     pages = {261-274},
     zbl = {0965.35152},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv74z1p261bwm}
}
Popov, A.; Zadadaev, S. Some constructive applications of $Λ^{2}$-representations to integration of PDEs. Annales Polonici Mathematici, Tome 75 (2000) pp. 261-274. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv74z1p261bwm/

[000] [1] M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, SIAM, Philadelphia, 1981. | Zbl 0472.35002

[001] [2] E. Cartan, Les systèmes différentiels extérieurs et leurs applications géométriques, Hermann, Paris, 1945. | Zbl 0211.12701

[002] [3] A. G. Popov, The non-Euclidean geometry and differential equations, in: Banach Center Publ. 33, Inst. Math., Polish Acad. Sci., 1996, 297-308. | Zbl 0851.35119

[003] [4] E. G. Poznyak and A. G. Popov, Lobachevsky geometry and the equations of mathematical physics, Russian Acad. Sci. Dokl. Math. 48 (1994), 338-342. | Zbl 0817.35098

[004] [5] E. G. Poznyak and A. G. Popov, Non-Euclidean geometry: Gauss formula and PDE's interpretation, Itogi Nauki i Tekhniki (VINITI), Geometry 2 (1994), 5-24 (in Russian).

[005] [6] E. G. Poznyak and A. G. Popov, Geometry of the sine-Gordon equation, Itogi Nauki i Tekhniki (VINITI), Problems of Geometry, 23 (1991), 99-130 (in Russian). | Zbl 0741.35072

[006] [7] E. G. Poznyak and A. G. Popov, The Sine-Gordon Equation: Geometry and Physics, Znanie, Moscow, 1991 (in Russian). | Zbl 0790.53002

[007] [8] E. G. Poznyak and E. V. Shikin, Differential Geometry, Moscow Univ. Press, Moscow, 1990 (in Russian).

[008] [9] A. A. Samarskĭ, Theory of Difference Schemes, Nauka, Moscow, 1977 (in Russian).

[009] [10] R. Sasaki, Soliton equations and pseudospherical surfaces, Nuclear Phys. B 154 (1979), 343-357.

[010] [11] A. S. Smogorzhevskiĭ, Geometric Constructions on the Lobachevsky Plane, Gostekhteorizdat, Moscow, 1951 (in Russian).

[011] [12] L. A. Takhtadzhyan and L. D. Faddeev, Hamiltonian Approach in Soliton Theory, Nauka, Moscow, 1986 (in Russian). | Zbl 0632.58003

[012] [13] S. A. Zadadaev, Λ2-representations of equations of mathematical physics and formulation of the spectral-evolutionary problem, Vestnik Moskov. Univ. Fiz. Astronom. 1998, no. 5, 29-32 (in Russian).

[013] [14] V. E. Zakharov and L. D. Faddeev, Korteweg-de Vries equation is a completely integrable Hamiltonian system, Funktsional. Anal. i Prilozhen. 5 (1971), no. 4, 18-127 (in Russian).