Set arithmetic and the enclosing problem in dynamics
Mrozek, Marian ; Zgliczyński, Piotr
Annales Polonici Mathematici, Tome 75 (2000), p. 237-259 / Harvested from The Polish Digital Mathematics Library

We study the enclosing problem for discrete and continuous dynamical systems in the context of computer assisted proofs. We review and compare the existing methods and emphasize the importance of developing a suitable set arithmetic for efficient algorithms solving the enclosing problem.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:208369
@article{bwmeta1.element.bwnjournal-article-apmv74z1p237bwm,
     author = {Mrozek, Marian and Zgliczy\'nski, Piotr},
     title = {Set arithmetic and the enclosing problem in dynamics},
     journal = {Annales Polonici Mathematici},
     volume = {75},
     year = {2000},
     pages = {237-259},
     zbl = {0967.65113},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv74z1p237bwm}
}
Mrozek, Marian; Zgliczyński, Piotr. Set arithmetic and the enclosing problem in dynamics. Annales Polonici Mathematici, Tome 75 (2000) pp. 237-259. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv74z1p237bwm/

[000] [1] R. Anguelov, Wrapping function of the initial value problem for ODE: Applications, Reliab. Comput. 5 (1999), 143-164. | Zbl 0937.65073

[001] [2] R. Anguelov and S. Markov, Wrapping effect and wrapping function, ibid. 4 (1998), 311-330. | Zbl 0919.65047

[002] [3] G. F. Corliss and R. Rihm, Validating an a priori enclosure using high-order Taylor series, in: Scientific Computing and Validated Numerics (Wuppertal, 1995), Math. Res. 90, Akademie-Verlag, Berlin, 1996, 228-238. | Zbl 0851.65054

[003] [4] Z. Galias and P. Zgliczyński, Computer assisted proof of chaos in the Lorenz system, Phys. D 115 (1998) 165-188. | Zbl 0941.37018

[004] [5] E. Hairer, S. P. Nørsett and G. Wanner, Solving Ordinary Differential Equations I, Nonstiff Problems, Springer, Berlin, 1987. | Zbl 0638.65058

[005] [6] R. J. Lohner, Computation of guaranteed enclosures for the solutions of ordinary initial and boundary value problems, in: Computational Ordinary Differential Equations, J. R. Cash and I. Gladwell (eds.), Clarendon Press, Oxford, 1992. | Zbl 0767.65069

[006] [7] K. Mischaikow and M. Mrozek, Chaos in Lorenz equations: a computer assisted proof, Bull. Amer. Math. Soc. (N.S.) 32 (1995), 66-72. | Zbl 0820.58042

[007] [8] K. Mischaikow and M. Mrozek, Chaos in the Lorenz equations: a computer assisted proof. Part II: details, Math. Comput. 67 (1998), 1023-1046. | Zbl 0913.58038

[008] [9] K. Mischaikow, M. Mrozek and A. Szymczak, Chaos in the Lorenz equations: a computer assisted proof. Part III: the classical parameter values, submitted. | Zbl 0979.37015

[009] [10] R. E. Moore, Interval Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1966. | Zbl 0176.13301

[010] [11] M. Mrozek, Topological invariants, multivalued maps and computer assisted proofs, Computers Math. 32 (1996), 83-104. | Zbl 0861.58027

[011] [12] M. Mrozek and M. Żelawski, Heteroclinic connections in the Kuramoto-Sivashin- sky equation, Reliab. Comput. 3 (1997), 277-285. | Zbl 0888.65091

[012] [13] A. Neumaier, The wrapping effect, ellipsoid arithmetic, stability and confidence regions, Computing Suppl. 9 (1993), 175-190. | Zbl 0790.65035

[013] [14] M. Warmus, Calculus of approximations, Bull. Acad. Polon. Sci. 4 (1956), 253-259.

[014] [15] M. Warmus, Approximation and inequalities in the calculus of approximations. Classification of approximate numbers, ibid. 9 (1961), 241-245. | Zbl 0098.31304

[015] [16] P. Zgliczyński, Rigorous verification of chaos in the Rössler equations, in: Scientific Computing and Validated Numerics, G. Alefeld, A. Frommer and B. Lang (eds.), Akademie-Verlag, Berlin, 1996, 287-292. | Zbl 0849.65041

[016] [17] P. Zgliczyński, Computer assisted proof of chaos in the Hénon map and in the Rössler equations, Nonlinearity 10 (1997), 243-252. | Zbl 0907.58048

[017] [18] P. Zgliczyński, Remarks on computer assisted proof of chaotic behavior in ODE's, in preparation.