A harmonic function in a cylinder with the normal derivative vanishing on the boundary is expanded into an infinite sum of certain fundamental harmonic functions. The growth condition under which it is reduced to a finite sum of them is given.
@article{bwmeta1.element.bwnjournal-article-apmv74z1p229bwm, author = {Miyamoto, Ikuko and Yoshida, Hidenobu}, title = {Harmonic functions in a cylinder with normal derivatives vanishing on the boundary}, journal = {Annales Polonici Mathematici}, volume = {75}, year = {2000}, pages = {229-235}, zbl = {0966.31003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv74z1p229bwm} }
Miyamoto, Ikuko; Yoshida, Hidenobu. Harmonic functions in a cylinder with normal derivatives vanishing on the boundary. Annales Polonici Mathematici, Tome 75 (2000) pp. 229-235. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv74z1p229bwm/
[000] [1] M. G. Bouligand, Sur les fonctions de Green et de Neumann du cylindre, Bull. Soc. Math. France 42 (1914), 168-242. | Zbl 45.0592.01
[001] [2] T. Carleman, Propriétés asymptotiques des fonctions fondamentales des membranes vibrantes, C. R. Skand. Math. Kongress 1934, 34-44.
[002] [3] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 1977. | Zbl 0361.35003
[003] [4] S. Minakshisundaram and Å. Pleijel, Some properties of the eigenfunctions of the Laplace-operator on Riemannian manifolds, Canad. J. Math. 1 (1949), 242-256. | Zbl 0041.42701
[004] [5] H. Weyl, Das asymptotische Verteilungsgestez der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung), Math. Ann. 71 (1912), 441-479.
[005] [6] D. V. Widder, Functions harmonic in a strip, Proc. Amer. Math. Soc. 12 (1961), 67-72. | Zbl 0096.07703