Convergence of power series along vector fields and their commutators; a Cartan-Kähler type theorem
Jakubczyk, B.
Annales Polonici Mathematici, Tome 75 (2000), p. 117-132 / Harvested from The Polish Digital Mathematics Library

We study convergence of formal power series along families of formal or analytic vector fields. One of our results says that if a formal power series converges along a family of vector fields, then it also converges along their commutators. Using this theorem and a result of T. Morimoto, we prove analyticity of formal solutions for a class of nonlinear singular PDEs. In the proofs we use results from control theory.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:208360
@article{bwmeta1.element.bwnjournal-article-apmv74z1p117bwm,
     author = {Jakubczyk, B.},
     title = {Convergence of power series along vector fields and their commutators; a Cartan-K\"ahler type theorem},
     journal = {Annales Polonici Mathematici},
     volume = {75},
     year = {2000},
     pages = {117-132},
     zbl = {0961.35023},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv74z1p117bwm}
}
Jakubczyk, B. Convergence of power series along vector fields and their commutators; a Cartan-Kähler type theorem. Annales Polonici Mathematici, Tome 75 (2000) pp. 117-132. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv74z1p117bwm/

[000] [CGM] F. Celle, J.-P. Gauthier and E. Milani, Existence of realizations of nonlinear input-output maps, IEEE Trans. Automat. Control. AC-31 (1986), 378-381. | Zbl 0587.93016

[001] [C] W. L. Chow, Ueber Systeme von linearen partiellen Differentialgleichungen erster Ordnung, Math. Ann. 117 (1939), 98-105. | Zbl 65.0398.01

[002] [F] M. Fliess, Réalisation locale des systèmes non linéaires, algèbres de Lie filtrées transitives et séries génératrices non commutatives, Invent. Math. 71 (1983), 521-537. | Zbl 0513.93014

[003] [G] A. M. Gabrielov, Formal relations between analytic functions, Math. USSR-Izv. 37 (1973), 1056-1088. | Zbl 0297.32007

[004] [J1] B. Jakubczyk, Existence and uniqueness of realizations of nonlinear systems, SIAM J. Control Optim. 18 (1980), 455-471. | Zbl 0447.93012

[005] [J2] B. Jakubczyk, Réalisations locales des opérateurs causals non linéaires, C. R. Acad. Sci. Paris 299 (1984), 787-789. | Zbl 0576.93014

[006] [J3] B. Jakubczyk, Local realizations of nonlinear causal operators, SIAM J. Control Optim. 24 (1986), 230-242. | Zbl 0613.93010

[007] [J4] B. Jakubczyk, Realizations of nonlinear systems; three approaches, in: Algebraic and Geometric Methods in Nonlinear Control Theory, M. Fliess and M. Hazewinkel (eds.), Reidel, 1986, 3-31.

[008] [K] A. Krener, A generalization of Chow's theorem and the bang-bang theorem to nonlinear control problems, SIAM J. Control 12 (1974), 43-52. | Zbl 0243.93008

[009] [Ma] B. Malgrange, Equation de Lie. II, J. Differential Geometry 7 (1972), 117-141.

[010] [Mo1] T. Morimoto, Théorème de Cartan-Kähler dans une classe de fonctions formelles Gevrey, C. R. Acad. Sci. Paris Sér. A 311 (1990), 433-436. | Zbl 0714.58060

[011] [Mo2] T. Morimoto, Théorème d'existence de solutions analytiques pour des systèmes d'équations aux dérivées partielles non-linéaires avec singularités, C. R. Acad. Sci. Paris Sér. I 321 (1995), 1491-1496.

[012] [N] T. Nagano, Linear differential systems with singularities and applications to transitive Lie algebras, J. Math. Soc. Japan 18 (1966), 398-404. | Zbl 0147.23502

[013] [R] P. K. Rashevskiĭ, On joining two points of a completely nonholonomic space by an admissible curve, Uchen. Zapiski Pedagog. Inst. im. Liebknechta Ser. Fiz.-Mat. 1938, no. 2, 83-94 (in Russian).

[014] [St1] R. S. Strichartz, Sub-Riemannian geometry, J. Differential Geometry 24 (1986), 221-263. | Zbl 0609.53021

[015] [St2] R. S. Strichartz, Corrections to 'Sub-Riemannian geometry', ibid. 30 (1989), 595-596.

[016] [S1] H. J. Sussmann, Orbits of families of vector fields and integrability of distributions, Trans. Amer. Math. Soc. 180 (1973), 171-188.

[017] [S2] H. J. Sussmann, unpublished manuscript.