The BV-algebra of a Jacobi manifold
Vaisman, Izu
Annales Polonici Mathematici, Tome 75 (2000), p. 275-290 / Harvested from The Polish Digital Mathematics Library

We show that the Gerstenhaber algebra of the 1-jet Lie algebroid of a Jacobi manifold has a canonical exact generator, and discuss duality between its homology and the Lie algebroid cohomology. We also give new examples of Lie bialgebroids over Poisson manifolds.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:262598
@article{bwmeta1.element.bwnjournal-article-apmv73z3p275bwm,
     author = {Vaisman, Izu},
     title = {The BV-algebra of a Jacobi manifold},
     journal = {Annales Polonici Mathematici},
     volume = {75},
     year = {2000},
     pages = {275-290},
     zbl = {0989.53050},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv73z3p275bwm}
}
Vaisman, Izu. The BV-algebra of a Jacobi manifold. Annales Polonici Mathematici, Tome 75 (2000) pp. 275-290. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv73z3p275bwm/

[000] [1] D. Chinea, M. de León and J. C. Marrero, The canonical double complex for Jacobi manifolds, C. R. Acad. Sci. Paris Sér. I 323 (1996), 637-642. | Zbl 0862.55016

[001] [2] I. Dorfman, Dirac Structures and Integrability of Nonlinear Evolution Equations, Wiley, New York, 1993. | Zbl 0717.58026

[002] [3] S. Evens, J.-H. Lu and A. Weinstein, Transverse measures, the modular class and a cohomology pairing for the Lie algebroids, Quart. J. Math. Oxford Ser. (2) 50 (1999), 417-436. | Zbl 0968.58014

[003] [4] E. Getzler, Batalin-Vilkovisky algebras and two-dimensional topological field theories, Comm. Math. Phys. 159 (1994), 265-285. | Zbl 0807.17026

[004] [5] F. Guédira et A. Lichnerowicz, Géométrie des algèbres de Lie de Kirillov, J. Math. Pures Appl. 63 (1984), 407-484. | Zbl 0562.53029

[005] [6] J. Huebschmann, Lie-Rinehart algebras, Gerstenhaber algebras and Batalin-Vil- kovisky algebras, Ann. Inst. Fourier (Grenoble) 48 (1998), 425-440. | Zbl 0973.17027

[006] [7] Y. Kerbrat et Z. Souici-Benhammadi, Variétés de Jacobi et groupoï des de contact, C. R. Acad. Sci. Paris Sér. I 317 (1993), 81-86.

[007] [8] Y. Kosmann-Schwarzbach, Exact Gerstenhaber algebras and Lie bialgebroids, Acta Appl. Math. 41 (1995), 153-165. | Zbl 0837.17014

[008] [9] J. L. Koszul, Crochet de Schouten-Nijenhuis et cohomologie, in: É. Cartan et les mathématiques d'aujourd'hui, Astérisque, hors série, 1985, 257-271.

[009] [10] M. de León, J. C. Marrero and E. Padrón, On the geometric quantization of Jacobi manifolds, J. Math. Phys. 38 (1997), 6185-6213. | Zbl 0898.58024

[010] [11] M. de León, J. C. Marrero and E. Padrón, Cohomologí a y Homologí a Canónica de Lichnerowicz-Jacobi, preprint, 1998.

[011] [12] P. Libermann and C.-M. Marle, Symplectic Geometry and Analytical Mecha- nics, D. Reidel, Dordrecht, 1987.

[012] [13] A. Lichnerowicz, Les variétés de Jacobi et leurs algèbres de Lie associées, J. Math. Pures Appl. 57 (1978), 453-488. | Zbl 0407.53025

[013] [14] A. Lichnerowicz, La géométrie des transformations canoniques, Bull. Soc. Math. Belg. Sér. A 31 (1979), 105-135. | Zbl 0462.58018

[014] [15] K. Mackenzie, Lie Groupoids and Lie Algebroids in Differential Geometry, Cambridge Univ. Press, Cambridge, 1987. | Zbl 0683.53029

[015] [16] K. Mackenzie and P. Xu, Lie bialgebroids and Poisson groupoids, Duke Math. J. 73 (1994), 415-452. | Zbl 0844.22005

[016] [17] I. Vaisman, Remarks on the use of the stable tangent bundle in differential geometry and in the unified field theory, Ann. Inst. H. Poincaré Phys. Théor. 28 (1978), 317-333. | Zbl 0377.53031

[017] [18] I. Vaisman, Locally conformal symplectic manifolds, Internat. J. Math. Math. Sci. 8 (1985), 521-536. | Zbl 0585.53030

[018] [19] I. Vaisman, Lectures on the Geometry of Poisson Manifolds, Progr. Math. 118, Birkhäuser, Basel, 1994.

[019] [20] A. Weinstein, The modular automorphism group of a Poisson manifold, J. Geom. Phys. 23 (1997), 379-394. | Zbl 0902.58013

[020] [21] P. Xu, Gerstenhaber algebras and BV-algebras in Poisson geometry, Comm. Math. Phys. 200 (1999), 545-560. | Zbl 0941.17016