We give a formula for the multiplicity of a holomorphic mapping , m > n, at an isolated zero, in terms of the degree of an analytic set at a point and the degree of a branched covering. We show that calculations of this multiplicity can be reduced to the case when m = n. We obtain an analogous result for the local Łojasiewicz exponent.
@article{bwmeta1.element.bwnjournal-article-apmv73z3p257bwm, author = {Spodzieja, S.}, title = {Multiplicity and the \L ojasiewicz exponent}, journal = {Annales Polonici Mathematici}, volume = {75}, year = {2000}, pages = {257-267}, zbl = {1002.32011}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv73z3p257bwm} }
Spodzieja, S. Multiplicity and the Łojasiewicz exponent. Annales Polonici Mathematici, Tome 75 (2000) pp. 257-267. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv73z3p257bwm/
[000] [ATW] R. Achilles, P. Tworzewski and T. Winiarski, On improper isolated intersection in complex analytic geometry, Ann. Polon. Math. 51 (1990), 21-36. | Zbl 0796.32006
[001] [C] J. Chądzyński, On the order of isolated zero of a holomorphic mapping, Bull. Polish Acad. Sci. Math. 31 (1983), 121-128. | Zbl 0554.32005
[002] [CL] S. H. Chang and Y. C. Lu, On C⁰-sufficiency of complex jets, Canad. J. Math. 25 (1973), 874-880. | Zbl 0258.58004
[003] [D'A] J. D'Angelo, Real hypersurfaces, orders of contact and applications, Ann. of Math. (2) 115 (1982), 615-637.
[004] [D] R. N. Draper, Intersection theory in analytic geometry, Math. Ann. 180 (1969), 175-204. | Zbl 0157.40502
[005] [KL] T. C. Kuo and Y. C. Lu, On analytic function germs of two complex variables, Topology 16 (1977), 299-310. | Zbl 0378.32001
[006] [LJT] M. Lejeune-Jalabert et B. Teissier, Clôture intégrale des idéaux et equisingularité, Centre de Mathématiques, École Polytechnique, 1974.
[007] [Ł₁] S. Łojasiewicz, Ensembles semi-analytiques, I.H.E.S., Bures-sur-Yvette, 1965.
[008] [Ł₂] S. Łojasiewicz, Introduction to Complex Analytic Geometry, Birkhäuser, Basel, 1991.
[009] [M] D. Mumford, Algebraic Geometry I. Complex Projective Varieties, Springer, Berlin, 1976. | Zbl 0356.14002
[010] [P₁] A. Płoski, Sur l'exposant d'une application analytique I, Bull. Polish Acad. Sci. Math. 32 (1984), 669-673. | Zbl 0579.32043
[011] [P₂] A. Płoski, Sur l'exposant d'une application analytique II, ibid. 33 (1985), 123-127. | Zbl 0586.32032
[012] [P₃] A. Płoski, Multiplicity and the Łojasiewicz exponent, in: Banach Center Publ. 20, PWN, 1988, 353-364. | Zbl 0661.32018
[013] [SV] J. Stückrad and W. Vogel, An algebraic approach to the intersection theory, in: The Curves Seminar at Queen's, Vol. II, Queen's Papers Pure Appl. Math. 61, Kingston, Ont., 1982, 1-32.
[014] [Te] B. Teissier, Variétés polaires. I. Invariants polaires des singularités d'hypersurfaces, Invent. Math. 40 (1977), 267-292. | Zbl 0446.32002
[015] [Tw] P. Tworzewski, Intersection theory in complex analytic geometry, Ann. Polon. Math. 62 (1995), 177-191. | Zbl 0911.32018
[016] [TW] P. Tworzewski and T. Winiarski, Cycles of zeros of holomorphic mappings, Bull. Polish Acad. Sci. Math. 37 (1989), 95-101. | Zbl 0759.32015
[017] [V] W. Vogel, Lectures on Results on Bézout's Theorem, notes by D. P. Patil, Lecture Notes, Tata Inst. Fund. Res. Bombay, Springer, 1984. | Zbl 0553.14022
[018] [W] H. Whitney, Tangents to an analytic variety, Ann. of Math. 81 (1965), 496-549. | Zbl 0152.27701