On the Kuramoto-Sivashinsky equation in a disk
Varlamov, Vladimir
Annales Polonici Mathematici, Tome 75 (2000), p. 227-256 / Harvested from The Polish Digital Mathematics Library

We consider the first initial-boundary value problem for the 2-D Kuramoto-Sivashinsky equation in a unit disk with homogeneous boundary conditions, periodicity conditions in the angle, and small initial data. Apart from proving the existence and uniqueness of a global in time solution, we construct it in the form of a series in a small parameter present in the initial conditions. In the stable case we also obtain the uniform in space long-time asymptotic expansion of the constructed solution and its asymptotics with respect to the nonlinearity constant. The method can work for other dissipative parabolic equations with dispersion.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:262852
@article{bwmeta1.element.bwnjournal-article-apmv73z3p227bwm,
     author = {Varlamov, Vladimir},
     title = {On the Kuramoto-Sivashinsky equation in a disk},
     journal = {Annales Polonici Mathematici},
     volume = {75},
     year = {2000},
     pages = {227-256},
     zbl = {0963.35035},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv73z3p227bwm}
}
Varlamov, Vladimir. On the Kuramoto-Sivashinsky equation in a disk. Annales Polonici Mathematici, Tome 75 (2000) pp. 227-256. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv73z3p227bwm/

[000] [1] M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations, and the Inverse Scattering, London Math. Soc., Cambridge Univ. Press, 1991. | Zbl 0762.35001

[001] [2] D. Armbruster, G. Guckenheimer, and P. Holmes, Kuramoto-Sivashinsky dynamics on the center unstable manifold, SIAM J. Appl. Math. 49 (1989), 676-691. | Zbl 0687.34036

[002] [3] N. G. Berloff and L. N. Howard, Solitary and periodic solutions of nonlinear nonintegrable equations, Stud. Appl. Math. 99 (1997), 1-24. | Zbl 0880.35105

[003] [4] D. J. Berney, Long waves on liquid films, J. Math. Phys. 45 (1966), 150-155. | Zbl 0148.23003

[004] [5] K. Chandrasekharan, Elliptic Functions, Springer, Berlin, 1985.

[005] [6] P. Collet, J. P. Eckmann, H. Epstein, and J. Stubbe, A global attracting set for the Kuramoto-Sivashinsky equation, Comm. Math. Phys. 152 (1993), 203-214. | Zbl 0777.35073

[006] [7] C. Foiaş, B. Nicolaenko, G. R. Sell, and R. Temam, Inertial manifolds for dissipative partial differential equations, C. R. Acad. Sci. Paris Sér. I 301 (1995), 199-241.

[007] [8] C. Foiaş, B. Nicolaenko, G. R. Sell, and R. Temam, Inertial manifolds for the Kuramoto-Sivashinsky equation and an estimate of their lowest dimension, J. Math. Pures Appl. 67 (1988), 197-226. | Zbl 0694.35028

[008] [9] A. S. Fokas, Initial-boundary value problems for soliton equations, in: Proc. III Potsdam-V Kiev Internat. Workshop 1991, Springer, Berlin, 1992.

[009] [10] A. S. Fokas and A. R. Its, Soliton generation for initial-boundary value problems, Phys. Rev. Lett. 68 (1992), 3117-3120. | Zbl 0969.35537

[010] [11] A. S. Fokas and A. R. Its, The linearization of the initial-boundary value problem of the nonlinear Schrödinger equation, SIAM J. Math. Anal. 27 (1996), 738-764. | Zbl 0851.35122

[011] [12] J. Goodman, Stability of the Kuramoto-Sivashinsky equation and related systems, Comm. Pure Appl. Math. 47 (1994), 293-306. | Zbl 0809.35105

[012] [13] A. P. Hooper and R. Grimshaw, Nonlinear instability at the interface between two viscous fluids, Phys. Fluids 28 (1985), 37-45. | Zbl 0565.76051

[013] [14] E. Jahnke, F. Emde and F. Lösch, Tables of Higher Functions, 6th ed., Teubner, Stuttgart, 1960. | Zbl 0087.12801

[014] [15] Y. Kuramoto and T. Tsuzuki, Persistent propagation of concentration waves in dissipative media far from the thermal equilibrium, Progr. Theoret. Phys. 55 (1976), 356-369.

[015] [16] Y. Kuramoto and T. Yamada, Turbulent state in chemical reactions, ibid. 56 (1976), 679.

[016] [17] J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Springer, New York, 1972.

[017] [18] D. Michelson, Steady solutions of the Kuramoto-Sivashinsky equation, Phys. D 19 (1986), 89-111. | Zbl 0603.35080

[018] [19] D. Michelson, Bunsen flames as steady solutions of the Kuramoto-Sivashinsky equation, SIAM J. Math. Anal. 23 (1991), 364-386. | Zbl 0787.34019

[019] [20] D. Michelson, Stability of the Bunsen flame profiles in the Kuramoto-Sivashinsky equation, SIAM J. Math. Anal. 27 (1996), 765-781. | Zbl 0851.34020

[020] [21] L. Molinet, Local dissipativity in L₂ for the Kuramoto-Sivashinsky equation in spatial dimension two, J. Dynam. Differential Equations, to appear. | Zbl 0970.35132

[021] [22] P. I. Naumkin and I. A. Shishmarëv, Nonlinear Nonlocal Equations in the Theory of Waves, Transl. Math. Monographs 133, Amer. Math. Soc., Providence, RI, 1994. | Zbl 0802.35002

[022] [23] B. Nicolaenko and B. Scheurer, Remarks on the Kuramoto-Sivashinsky equation, Phys. D 12 (1984), 391-395. | Zbl 0576.35058

[023] [24] B. Nicolaenko, B. Scheurer, and R. Temam, Some global dynamical properties of the Kuramoto-Sivashinsky equation: nonlinear stability and attractors, ibid. 16 (1985), 155-183. | Zbl 0592.35013

[024] [25] F. W. J. Olver, Introduction to Asymptotics and Special Functions, Acad. Press, New York, 1974. | Zbl 0308.41023

[025] [26] S. V. Raghavan, J. B. McLeod, and W. O. Troy, A singular perturbation problem arising from the Kuramoto-Sivashinsky equation, Differential Integral Equations 19 (1997), 1-36. | Zbl 0879.34028

[026] [27] G. Raugel and G. Sell, Navier-Stokes equations on thin 3D domains. I: Global attractors and global regularity of solutions, J. Amer. Math. Soc. 6 (1993), 503-568. | Zbl 0787.34039

[027] [28] G. R. Sell and M. Taboada, Local dissipativity and attractors for the Kuramoto-Sivashinsky equation in thin 2D domains, Nonlinear Anal. 18 (1992), 671-687. | Zbl 0784.35046

[028] [29] G. I. Sivashinsky, On flame propagation under conditions of stoichiometry, SIAM J. Appl. Math. 39 (1980), 67-82. | Zbl 0464.76055

[029] [30] G. I. Sivashinsky, Instabilities, pattern formation, and turbulence in flames, Ann. Rev. Fluid Mech. 15 (1983), 179-199. | Zbl 0538.76053

[030] [31] E. C. Titchmarsh, Eigenfunction Expansions Associated with Second-Order Differential Equations, Clarendon Press, Oxford, 1958. | Zbl 0097.27601

[031] [32] G. Tolstov, Fourier Series, Dover, New York, 1962.

[032] [33] J. Topper and T. Kawahara, Approximate equations for nonlinear waves on a viscous fluid, J. Phys. Soc. Japan 44 (1978), 663-666. | Zbl 1334.76054

[033] [34] W. C. Troy, The existence of steady solutions of the Kuramoto-Sivashinsky equation, J. Differential Equations 82 (1989), 269-313. | Zbl 0693.34053

[034] [35] V. V. Varlamov, On the Cauchy problem for the damped Boussinesq equation, Differential Integral Equations 9 (1996), 619-634. | Zbl 0844.35095

[035] [36] V. V. Varlamov, On spatially periodic solutions of the damped Boussinesq equation, ibid. 10 (1997), 1197-1211. | Zbl 0940.35162

[036] [37] V. V. Varlamov, On the initial-boundary value problem for the damped Boussinesq equation, Discrete Contin. Dynam. Systems 4 (1998), 431-444. | Zbl 0952.35103

[037] [38] V. V. Varlamov, Long-time asymptotics of solutions of the second initial-boundary value problem for the damped Boussinesq equation, Abstract Appl. Anal. 2 (1998), 97-115.

[038] [39] V. V. Varlamov, The third-order nonlinear evolution equation governing wave propagation in relaxing media, Stud. Appl. Math. 99 (1997), 25-47. | Zbl 0881.35079

[039] [40] V. V. Varlamov, On the damped Boussinesq equation in a circle, Nonlinear Anal. 38 (1999), 447-470. | Zbl 0938.35146

[040] [41] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Univ. Press, London, 1966. | Zbl 0174.36202