Generic properties of learning systems
Szarek, Tomasz
Annales Polonici Mathematici, Tome 75 (2000), p. 93-103 / Harvested from The Polish Digital Mathematics Library

It is shown that the set of learning systems having a singular stationary distribution is generic in the family of all systems satisfying the average contractivity condition.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:262803
@article{bwmeta1.element.bwnjournal-article-apmv73z2p93bwm,
     author = {Szarek, Tomasz},
     title = {Generic properties of learning systems},
     journal = {Annales Polonici Mathematici},
     volume = {75},
     year = {2000},
     pages = {93-103},
     zbl = {0966.60062},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv73z2p93bwm}
}
Szarek, Tomasz. Generic properties of learning systems. Annales Polonici Mathematici, Tome 75 (2000) pp. 93-103. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv73z2p93bwm/

[000] [1] W. Bartoszek, Norm residuality of ergodic operators, Bull. Polish Acad. Sci. Math. 29 (1981), 165-167. | Zbl 0472.47006

[001] [2] R. M. Dudley, Probabilities and Metrics, Aarhus Universitet, 1976.

[002] [3] R. Fortet et B. Mourier, Convergence de la répartition empirique vers la répartition théorétique, Ann. Sci. École Norm. Sup. 70 267-285 (1953). | Zbl 0053.09601

[003] [4] A. Iwanik, Approximation theorem for stochastic operators, Indiana Univ. Math. J. 29 (1980), 415-425. | Zbl 0474.47003

[004] [5] A. Iwanik and R. Rębowski, Structure of mixing and category of complete mixing for stochastic operators, Ann. Polon. Math. 56 (1992), 233-242. | Zbl 0786.47004

[005] [6] A. Lasota and J. Myjak, Generic properties of fractal measures, Bull. Polish Acad. Sci. Math. 42 (1994), 283-296. | Zbl 0851.28004

[006] [7] A. Lasota and J. A. Yorke, Lower bound technique for Markov operators and iterated function systems, Random Comput. Dynam. 2 (1994), 41-77. | Zbl 0804.47033

[007] [8] T. Szarek, Generic properties of continuous iterated function systems, Bull. Polish Acad. Sci. Math. 47 (1997), 77-89. | Zbl 0926.60057

[008] [9] T. Szarek, Iterated function systems depending on a previous transformation, Univ. Iagel. Acta Math. 33 (1996), 161-172. | Zbl 0888.47016

[009] [10] T. Szarek, Markov operators acting on Polish spaces, Ann. Polon. Math. 67 (1997), 247-257. | Zbl 0903.60052