Pointwise approximation by Meyer-König and Zeller operators
Zeng, Xiao-Ming ; Zhao, Jun-Ning
Annales Polonici Mathematici, Tome 75 (2000), p. 185-196 / Harvested from The Polish Digital Mathematics Library

We study the rate of pointwise convergence of Meyer-König and Zeller operators for bounded functions, and get an asymptotically optimal estimate.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:262531
@article{bwmeta1.element.bwnjournal-article-apmv73z2p185bwm,
     author = {Zeng, Xiao-Ming and Zhao, Jun-Ning},
     title = {Pointwise approximation by Meyer-K\"onig and Zeller operators},
     journal = {Annales Polonici Mathematici},
     volume = {75},
     year = {2000},
     pages = {185-196},
     zbl = {0964.41012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv73z2p185bwm}
}
Zeng, Xiao-Ming; Zhao, Jun-Ning. Pointwise approximation by Meyer-König and Zeller operators. Annales Polonici Mathematici, Tome 75 (2000) pp. 185-196. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv73z2p185bwm/

[000] [1] U. Abel, The moments for the Meyer-König and Zeller operators, J. Approx. Theory 82 (1995), 352-361. | Zbl 0828.41009

[001] [2] J. A. H. Alkemade, The second moment for the Meyer-König and Zeller operators, ibid. 40 (1984), 261-273. | Zbl 0575.41013

[002] [3] M. Becker and R. J. Nessel, A global approximation theorem for the Meyer-König and Zeller operators, Math. Z. 160 (1978), 195-206. | Zbl 0376.41007

[003] [4] R. Bojanic and M. Vuilleumier, On the rate of convergence of Fourier-Legendre series of functions of bounded variation, J. Approx. Theory 31 (1981), 67-79. | Zbl 0494.42003

[004] [5] E. W. Cheney and A. Sharma, Bernstein power series, Canad. J. Math. 16 (1964), 241-252. | Zbl 0128.29001

[005] [6] F. Cheng, On the rate of convergence of Bernstein polynomials of functions of bounded variation, J. Approx. Theory 39 (1983), 259-274. | Zbl 0533.41020

[006] [7] W. Feller, An Introduction to Probability Theory and Its Applications, Wiley, New York, 1971. | Zbl 0219.60003

[007] [8] S. Guo and M. Khan, On the rate of convergence of some operators on functions of bounded variation, J. Approx. Theory 58 (1989), 90-101. | Zbl 0683.41030

[008] [9] V. Maier, M. W. Müller and J. Swetits, L₁ saturation class of the integrated Meyer-König and Zeller operators, ibid. 32 (1981), 27-31. | Zbl 0489.41022

[009] [10] A. N. Shiryayev, Probability, Springer, New York, 1984.

[010] [11] V. Totik, Approximation by Meyer-König and Zeller type operators, Math. Z. 182 (1983), 425-446. | Zbl 0502.41006

[011] [12] X. M. Zeng, Bounds for Bernstein basis functions and Meyer-König and Zeller basis functions, J. Math. Anal. Appl. 219 (1998), 364-376. | Zbl 0909.41015

[012] [13] X. M. Zeng, On the rate of convergence of the generalized Szász type operators for bounded variation functions, ibid. 226 (1998), 309-325. | Zbl 0915.41016

[013] [14] X. M. Zeng and A. Piriou, On the rate of convergence of two Bernstein-Bézier type operators for bounded variation functions, J. Approx. Theory 95 (1998), 369-387. | Zbl 0918.41016