We show that under some assumptions on the function f the system generates chaotic dynamics for sufficiently small parameter ϕ. We use the topological method based on the Lefschetz fixed point theorem and the Ważewski retract theorem.
@article{bwmeta1.element.bwnjournal-article-apmv73z2p159bwm, author = {W\'ojcik, Klaudiusz}, title = {Chaos in some planar nonautonomous polynomial differential equation}, journal = {Annales Polonici Mathematici}, volume = {75}, year = {2000}, pages = {159-168}, zbl = {0969.37010}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv73z2p159bwm} }
Wójcik, Klaudiusz. Chaos in some planar nonautonomous polynomial differential equation. Annales Polonici Mathematici, Tome 75 (2000) pp. 159-168. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv73z2p159bwm/
[000] [Ma] J. Mawhin, Periodic solutions of some planar non-autonomous polynomial differential equations, J. Differential Integral Equations 7 (1994), 1055-1061. | Zbl 0802.34045
[001] [MMZ] R. Manásevich, J. Mawhin and F. Zanolin, Periodic solutions of complex-valued differential equations and systems with periodic coefficients, J. Differential Equations 126 (1996), 355-373. | Zbl 0848.34027
[002] [MM] K. Mischaikow and M. Mrozek, Chaos in Lorenz equations: a computer assisted proof, Bull. Amer. Math. Soc. 32 (1995), 66-72. | Zbl 0820.58042
[003] [S] R. Srzednicki, Periodic and bounded solutions in blocks for time-periodic nonautonomous ordinary differential equations, Nonlinear Anal. 22 (1994), 707-737. | Zbl 0801.34041
[004] [S1] R. Srzednicki, On periodic solutions of planar differential equations with periodic coefficients, J. Differential Equations 114 (1994), 77-100. | Zbl 0811.34031
[005] [SW] R. Srzednicki and K. Wójcik, A geometric method for detecting chaotic dynamics, ibid. 135 (1997), 66-82. | Zbl 0873.58049
[006] [W] S. Wiggins, Global Bifurcation and Chaos. Analytical Methods, Springer, New York, 1988. | Zbl 0661.58001
[007] [W1] K. Wójcik, Isolating segments and symbolic dynamics, Nonlinear Anal. 33 (1998), 575-591. | Zbl 0955.37005
[008] [W2] K. Wójcik, On detecting periodic solutions and chaos in ODE's, ibid., to appear.