Let V be a two-dimensional real symmetric space with unit ball having 8n extreme points. Let λ(V) denote the absolute projection constant of V. We show that where is the space whose ball is a regular 8n-polygon. Also we reprove a result of [1] and [5] which states that for any two-dimensional real symmetric space V.
@article{bwmeta1.element.bwnjournal-article-apmv73z2p119bwm, author = {Chalmers, Bruce and Lewicki, Grzegorz}, title = {Two-dimensional real symmetric spaces with maximal projection constant}, journal = {Annales Polonici Mathematici}, volume = {75}, year = {2000}, pages = {119-134}, zbl = {0968.41017}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv73z2p119bwm} }
Chalmers, Bruce; Lewicki, Grzegorz. Two-dimensional real symmetric spaces with maximal projection constant. Annales Polonici Mathematici, Tome 75 (2000) pp. 119-134. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv73z2p119bwm/
[000] [1] B. L. Chalmers, C. Franchetti and M. Giaquinta, On the self-length of two-dimensional Banach spaces, Bull. Austral. Math. Soc. 53 (1996), 101-107. | Zbl 0854.46012
[001] [2] B. L. Chalmers and F. T. Metcalf, The determination of minimal projections and extensions in L¹, Trans. Amer. Math. Soc. 329 (1992), 289-305. | Zbl 0753.41018
[002] [3] B. L. Chalmers and F. T. Metcalf, A characterization and equations for minimal projections and extensions, J. Operator Theory 32 (1994), 31-46. | Zbl 0827.41016
[003] [4] B. L. Chalmers and F. T. Metcalf, A simple formula showing L¹ is a maximal overspace for two-dimensional real spaces, Ann. Polon. Math. 56 (1992), 303-309. | Zbl 0808.46016
[004] [5] H. Koenig, Projections onto symmetric spaces, Quaestiones Math. 18 (1995), 199-220. | Zbl 0827.46005
[005] [6] J. Lindenstrauss, On the extension of operators with a finite-dimensional range, Illinois J. Math. 8 (1964), 488-499. | Zbl 0132.09803
[006] [7] N. Tomczak-Jaegermann, Banach-Mazur Distances and Finite-Dimensional Operator Ideals, Wiley, New York, 1989.
[007] [8] D. Yost, L₁ contains every two-dimensional normed space, Ann. Polon. Math. 49 (1988), 17-19. | Zbl 0679.46016