Two-dimensional real symmetric spaces with maximal projection constant
Chalmers, Bruce ; Lewicki, Grzegorz
Annales Polonici Mathematici, Tome 75 (2000), p. 119-134 / Harvested from The Polish Digital Mathematics Library

Let V be a two-dimensional real symmetric space with unit ball having 8n extreme points. Let λ(V) denote the absolute projection constant of V. We show that λ(V)λ(Vn) where Vn is the space whose ball is a regular 8n-polygon. Also we reprove a result of [1] and [5] which states that 4/π=λ(l(2))λ(V) for any two-dimensional real symmetric space V.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:262661
@article{bwmeta1.element.bwnjournal-article-apmv73z2p119bwm,
     author = {Chalmers, Bruce and Lewicki, Grzegorz},
     title = {Two-dimensional real symmetric spaces with maximal projection constant},
     journal = {Annales Polonici Mathematici},
     volume = {75},
     year = {2000},
     pages = {119-134},
     zbl = {0968.41017},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv73z2p119bwm}
}
Chalmers, Bruce; Lewicki, Grzegorz. Two-dimensional real symmetric spaces with maximal projection constant. Annales Polonici Mathematici, Tome 75 (2000) pp. 119-134. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv73z2p119bwm/

[000] [1] B. L. Chalmers, C. Franchetti and M. Giaquinta, On the self-length of two-dimensional Banach spaces, Bull. Austral. Math. Soc. 53 (1996), 101-107. | Zbl 0854.46012

[001] [2] B. L. Chalmers and F. T. Metcalf, The determination of minimal projections and extensions in L¹, Trans. Amer. Math. Soc. 329 (1992), 289-305. | Zbl 0753.41018

[002] [3] B. L. Chalmers and F. T. Metcalf, A characterization and equations for minimal projections and extensions, J. Operator Theory 32 (1994), 31-46. | Zbl 0827.41016

[003] [4] B. L. Chalmers and F. T. Metcalf, A simple formula showing L¹ is a maximal overspace for two-dimensional real spaces, Ann. Polon. Math. 56 (1992), 303-309. | Zbl 0808.46016

[004] [5] H. Koenig, Projections onto symmetric spaces, Quaestiones Math. 18 (1995), 199-220. | Zbl 0827.46005

[005] [6] J. Lindenstrauss, On the extension of operators with a finite-dimensional range, Illinois J. Math. 8 (1964), 488-499. | Zbl 0132.09803

[006] [7] N. Tomczak-Jaegermann, Banach-Mazur Distances and Finite-Dimensional Operator Ideals, Wiley, New York, 1989.

[007] [8] D. Yost, L₁ contains every two-dimensional normed space, Ann. Polon. Math. 49 (1988), 17-19. | Zbl 0679.46016