Applications of the Carathéodory theorem to PDEs
Holly, Konstanty ; Orewczyk, Joanna
Annales Polonici Mathematici, Tome 75 (2000), p. 1-27 / Harvested from The Polish Digital Mathematics Library

We discuss and exploit the Carathéodory theorem on existence and uniqueness of an absolutely continuous solution x: ℐ (⊂ ℝ) → X of a general ODE (*)=(t,x) for the right-hand side ℱ : dom ℱ ( ⊂ ℝ × X) → X taking values in an arbitrary Banach space X, and a related result concerning an extension of x. We propose a definition of solvability of (*) admitting all connected ℐ and unifying the cases “dom ℱ is open” and “dom ℱ = ℐ × Ω for some Ω ⊂ X”. We show how to use the theorems mentioned above to get approximate solutions of a nonlinear parabolic PDE and exact solutions of a linear evolution PDE with distribution data.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:262557
@article{bwmeta1.element.bwnjournal-article-apmv73z1p1bwm,
     author = {Holly, Konstanty and Orewczyk, Joanna},
     title = {Applications of the Carath\'eodory theorem to PDEs},
     journal = {Annales Polonici Mathematici},
     volume = {75},
     year = {2000},
     pages = {1-27},
     zbl = {0968.34042},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv73z1p1bwm}
}
Holly, Konstanty; Orewczyk, Joanna. Applications of the Carathéodory theorem to PDEs. Annales Polonici Mathematici, Tome 75 (2000) pp. 1-27. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv73z1p1bwm/

[000] [1] G. Aguaro, Sul teorema di esistenza di Carathéodory per i sistemi di equazioni differenziali ordinarie, Boll. Un. Mat. Ital. 8 (1955), 208-212. | Zbl 0064.33601

[001] [2] P. S. Bondarenko, A remark on Carathéodory's existence and uniqueness conditions, Visnik Kiiv. Univ. Ser. Mat. Meh. 14 (1972), 39-42 (in Ukrainian).

[002] [3] C. Carathéodory, Vorlesungen über reelle Funktionen, Teubner, Leipzig, 1927.

[003] [4] J. D. Dollard and C. N. Friedman, Product Integrals, Encyclopedia Math. Appl. 10, Addison-Wesley, London, 1979.

[004] [5] W. N. Everitt and D. Race, On necessary and sufficient conditions for the existence of Carathéodory solutions of ordinary differential equations, Quaestiones Math. 2 (1977/78), 507-512. | Zbl 0392.34002

[005] [6] P. Hartman, Ordinary Differential Equations, Wiley, 1964, p. 23. | Zbl 0125.32102

[006] [7] K. Holly, Approach to an integral kernel of the evolution N-S equations in n through integration of distribution-valued curves, in preparation.

[007] [8] K. Holly and M. Danielewski, Interdiffusion in solids, free boundary problem for r-component (r ≥ 2) one dimensional mixture showing constant concentration, Phys. Rev. B 50 (1994), 13336-13346.

[008] [9] K. Holly and M. Wiciak, Compactness method applied to an abstract nonlinear parabolic equation, in: Selected Problems of Mathematics, Anniversary Issue, Vol. 6, Cracow Univ. of Techn., Cracow, 1995, 95-160.

[009] [10] J. Liouville, Sur le développement des fonctions ou parties de fonctions en séries, etc, Second Mémoire, J. de Math. 2 (1837), 16-35.

[010] [11] S. Łojasiewicz, An Introduction to the Theory of Real Functions, Wiley, 1988. | Zbl 0653.26001

[011] [12] J. Mateja, personal communication.

[012] [13] Z. Opial, Sur l'équation différentielle ordinaire du premier ordre dont le second membre satisfait aux conditions de Carathéodory, Ann. Polon. Math. 8 (1960), 23-28. | Zbl 0093.08404

[013] [14] A. Pelczar and J. Szarski, Introduction to the Theory of Differential Equations, PWN, Warszawa, 1987 (in Polish).

[014] [15] E. Picard, Mémoire sur la théorie des équations aux dérivées partielles et la méthode des approximations successives, J. Math. Pures Appl. 6 (1890), 145-210. | Zbl 22.0357.02

[015] [16] R. Rabczuk, Elements of Differential Inequalities, PWN, Warszawa, 1976 (in Polish). | Zbl 0351.34006

[016] [17] S. Saks, Theory of the Integral, 2nd ed., Stechert, New York, 1937. | Zbl 0017.30004

[017] [18] G. Sansone, Equazioni differenziali nel campo reale, Parte seconda, Zanichelli, Bologna, 1949. | Zbl 0033.36801

[018] [19] K. Yosida, Functional Analysis, 6th ed., Springer, 1980, Chap. V, Sec. 5, 135-136.