We prove several new results on the multivariate transfinite diameter and its connection with pluripotential theory: a formula for the transfinite diameter of a general product set, a comparison theorem and a new expression involving Robin's functions. We also study the transfinite diameter of the pre-image under certain proper polynomial mappings.
@article{bwmeta1.element.bwnjournal-article-apmv72z3p285bwm, author = {Bloom, Thomas and Calvi, Jean-Paul}, title = {On the multivariate transfinite diameter}, journal = {Annales Polonici Mathematici}, volume = {72}, year = {1999}, pages = {285-305}, zbl = {0954.32020}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv72z3p285bwm} }
Bloom, Thomas; Calvi, Jean-Paul. On the multivariate transfinite diameter. Annales Polonici Mathematici, Tome 72 (1999) pp. 285-305. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv72z3p285bwm/
[000] [Ba] M. Baran, Conjugate norms in and related geometrical problems, Dissertationes Math. 378 (1998).
[001] [BT] E. Bedford and B. A. Taylor, Plurisubharmonic functions with logarithmic singularities, Ann. Inst. Fourier (Grenoble) 38 (1988), no. 4, 133-171. | Zbl 0626.32022
[002] [BT2] E. Bedford and B. A. Taylor, Fine topology, Šilov boundary, and , J. Funct. Anal. 72 (1987), 225-251. | Zbl 0677.31005
[003] [Blo] Z. Błocki, The equilibrium measure for product subsets of , preprint, 1999.
[004] [Bl] T. Bloom, Some applications of the Robin function to multivariable approximation theory, J. Approx. Theory 92 (1998), 1-21. | Zbl 0896.31003
[005] [BBCL] T. Bloom, L. Bos, C. Christensen and N. Levenberg, Polynomial interpolation of holomorphic functions in ℂ and , Rocky Mountain J. Math. 22 (1992), 441-470. | Zbl 0763.32009
[006] [BC] T. Bloom and J.-P. Calvi, On multivariate minimal polynomials, preprint, 1999.
[007] [Bo] L. Bos, A characteristic of points in having a Lebesgue function of exponential growth, J. Approx. Theory 56 (1989), 316-329. | Zbl 0675.41013
[008] [Go] G. M. Goluzin, Geometric Theory of a Function of a Complex Variable, Amer. Math. Soc., Providence, 1969. | Zbl 0183.07502
[009] [Je] M. Jędrzejowski, The homogeneous transfinite diameter of a compact subset of , Ann. Polon. Math. 55 (1991), 191-205. | Zbl 0748.31008
[010] [Kl] M. Klimek, Pluripotential Theory, Oxford Univ. Press, Oxford, 1991.
[011] [Kl2] M. Klimek, Metrics associated with extremal plurisubharmonic functions, Proc. Amer. Math. Soc. 125 (1995), 2763-2770. | Zbl 0935.32028
[012] [Le] N. Levenberg, Capacities in Several Complex Variables, thesis, University of Michigan, 1984.
[013] [LT] N. Levenberg and B. A. Taylor, Comparison of capacities in , in: Lectures Notes in Math. 1094, Springer, 1984, 162-172.
[014] [NZ] T. V. Nguyen et A. Zeriahi, Familles de polynômes presque partout bornées, Bull. Sci. Math. (2) 107 (1983), 81-91. | Zbl 0523.32011
[015] [Ra] T. Ransford, Potential Theory in the Complex Plane, Cambridge Univ. Press, Cambridge, 1995.
[016] [SS] M. Schiffer and J. Siciak, Transfinite diameter and analytic continuation of functions of two complex variables, in: Studies in Math. Analysis and Related Topics, Stanford Univ. Press, 1962, 341-358.
[017] [Sh] V. P. Sheĭnov, Invariant form of Pólya's inequalities, Siberian Math. J. 14 (1973), 138-145.
[018] [Si1] J. Siciak, Extremal plurisubharmonic functions on , Ann. Polon. Math. 39 (1981), 175-211.
[019] [Si2] J. Siciak, A remark on Tchebysheff polynomials in , Univ. Iagell. Acta Math. 35 (1997), 37-45. | Zbl 0951.32011
[020] [Za] V. P. Zaharjuta [V. P. Zakharyuta], Transfinite diameter, Chebyshev constants, and capacity for compacta in , Math. USSR-Sb. 25 (1975), 350-364.