On some generalization of box splines
Wronicz, Zygmunt
Annales Polonici Mathematici, Tome 72 (1999), p. 261-271 / Harvested from The Polish Digital Mathematics Library

We give a generalization of box splines. We prove some of their properties and we give applications to interpolation and approximation of functions.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:262844
@article{bwmeta1.element.bwnjournal-article-apmv72z3p261bwm,
     author = {Wronicz, Zygmunt},
     title = {On some generalization of box splines},
     journal = {Annales Polonici Mathematici},
     volume = {72},
     year = {1999},
     pages = {261-271},
     zbl = {0959.41009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv72z3p261bwm}
}
Wronicz, Zygmunt. On some generalization of box splines. Annales Polonici Mathematici, Tome 72 (1999) pp. 261-271. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv72z3p261bwm/

[000] [1] B. D. Bojanov, H. A. Hakopian, and A. A. Sahakian, Spline Functions and Multivariate Interpolations, Kluwer, 1993. | Zbl 0772.41011

[001] [2] C. de Boor and R. De Vore, Approximation by smooth multivariate splines, Trans. Amer Math. Soc. 276 (1983), 775-788. | Zbl 0529.41010

[002] [3] C. de Boor and K. Höllig, B-splines from parallelepipeds, J. Anal. Math. 42 (1982/83), 99-115. | Zbl 0534.41007

[003] [4] C. de Boor, K. Höllig, and S. Riemenschneider, Box Splines, Springer, 1993. | Zbl 0814.41012

[004] [5] C. de Boor, R. De Vore, and A. Ron, On the construction of multivariate (pre)wavelets, Constr. Approx. 9(1993), 123-166. | Zbl 0773.41013

[005] [6] K. Dziedziul, Box Splines, Wyd. P.G., Gdańsk, 1997 (in Polish).

[006] [7] G. Fix and G. Strang, A Fourier analysis of the finite element variational method, in: Constructive Aspects of Functional Analysis, G. Geymonat (ed.), Cremonese, Rome, 1973, 793-840.

[007] [8] K. Jetter, Multivariate approximation from the cardinal interpolation point of view, in: Approximation Theory VII (Austin, TX, 1992), E. W. Cheney, C. K. Chui, and L. L. Schumaker (eds.), Academic Press, 1993, 131-161. | Zbl 0767.41005

[008] [9] S. Karlin and W. J. Studden, Tchebysheff Systems: with Applications in Analysis and Statistics, Interscience, New York, 1966. | Zbl 0153.38902

[009] [10] J. K. Kowalski, Application of box splines to the approximation of Sobolev spaces, J. Approx. Theory 61 (1990), 55-73. | Zbl 0709.41007

[010] [11] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, 1971. | Zbl 0232.42007

[011] [12] Z. Wronicz, Chebyshevian splines, Dissertationes Math. 305 (1990).

[012] [13] Z. Wronicz, On some generalization of box splines, Preprint 34 (January 97), Instytut Matematyki AGH. | Zbl 0959.41009

[013] [14] Z. Wronicz, On some properties of box splines, Preprint 25 (January 98), Wydział Matematyki Stosowanej AGH. | Zbl 0959.41009