Quasicrystals and almost periodic functions
Zając, Mariusz
Annales Polonici Mathematici, Tome 72 (1999), p. 251-259 / Harvested from The Polish Digital Mathematics Library

We consider analogies between the "cut-and-project" method of constructing quasicrystals and the theory of almost periodic functions. In particular an analytic method of constructing almost periodic functions by means of convolution is presented. A geometric approach to critical points of such functions is also shown and illustrated with examples.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:262549
@article{bwmeta1.element.bwnjournal-article-apmv72z3p251bwm,
     author = {Zaj\k ac, Mariusz},
     title = {Quasicrystals and almost periodic functions},
     journal = {Annales Polonici Mathematici},
     volume = {72},
     year = {1999},
     pages = {251-259},
     zbl = {0949.42007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv72z3p251bwm}
}
Zając, Mariusz. Quasicrystals and almost periodic functions. Annales Polonici Mathematici, Tome 72 (1999) pp. 251-259. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv72z3p251bwm/

[000] [1] V. I. Arnold, Remarks on quasicrystallic symmetries, Phys. D 33 (1988), 21-25. | Zbl 0684.52008

[001] [2] S. Bochner, Abstrakte fastperiodische Funktionen, Acta Math. 61 (1933), 149-184. | Zbl 59.0997.01

[002] [3] H. Bohr, Zur Theorie der fastperiodischen Funktionen, ibid. 45 (1925), 29-127.

[003] [4] N. G. de Bruijn, Algebraic theory of Penrose non-periodic tilings, Nederl. Akad. Wetensch. Proc. A84 (1981), 39-66. | Zbl 0457.05021

[004] [5] S. M. Guseĭn-Zade, The number of critical points of a quasiperiodic potential, Funct. Anal. Appl. 23 (1989), no. 2, 129-130. | Zbl 0711.58007

[005] [6] R. Penrose, Pentaplexity, Eureka 39 (1978), 16-22.