We consider analogies between the "cut-and-project" method of constructing quasicrystals and the theory of almost periodic functions. In particular an analytic method of constructing almost periodic functions by means of convolution is presented. A geometric approach to critical points of such functions is also shown and illustrated with examples.
@article{bwmeta1.element.bwnjournal-article-apmv72z3p251bwm, author = {Zaj\k ac, Mariusz}, title = {Quasicrystals and almost periodic functions}, journal = {Annales Polonici Mathematici}, volume = {72}, year = {1999}, pages = {251-259}, zbl = {0949.42007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv72z3p251bwm} }
Zając, Mariusz. Quasicrystals and almost periodic functions. Annales Polonici Mathematici, Tome 72 (1999) pp. 251-259. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv72z3p251bwm/
[000] [1] V. I. Arnold, Remarks on quasicrystallic symmetries, Phys. D 33 (1988), 21-25. | Zbl 0684.52008
[001] [2] S. Bochner, Abstrakte fastperiodische Funktionen, Acta Math. 61 (1933), 149-184. | Zbl 59.0997.01
[002] [3] H. Bohr, Zur Theorie der fastperiodischen Funktionen, ibid. 45 (1925), 29-127.
[003] [4] N. G. de Bruijn, Algebraic theory of Penrose non-periodic tilings, Nederl. Akad. Wetensch. Proc. A84 (1981), 39-66. | Zbl 0457.05021
[004] [5] S. M. Guseĭn-Zade, The number of critical points of a quasiperiodic potential, Funct. Anal. Appl. 23 (1989), no. 2, 129-130. | Zbl 0711.58007
[005] [6] R. Penrose, Pentaplexity, Eureka 39 (1978), 16-22.