Sufficient and necessary conditions are presented under which two given functions can be separated by a function Π-affine in Rodé sense (resp. Π-convex, Π-concave). As special cases several old and new separation theorems are obtained.
@article{bwmeta1.element.bwnjournal-article-apmv72z3p207bwm, author = {Nikodem, Kazimierz and P\'ales, Zsolt and W\k asowicz, Szymon}, title = {Abstract separation theorems of Rod\'e type and their applications}, journal = {Annales Polonici Mathematici}, volume = {72}, year = {1999}, pages = {207-217}, zbl = {0956.39020}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv72z3p207bwm} }
Nikodem, Kazimierz; Páles, Zsolt; Wąsowicz, Szymon. Abstract separation theorems of Rodé type and their applications. Annales Polonici Mathematici, Tome 72 (1999) pp. 207-217. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv72z3p207bwm/
[000] [1] K. Baron, J. Matkowski and K. Nikodem, A sandwich with convexity, Math. Pannonica 5 (1994), 139-144. | Zbl 0803.39011
[001] [2] E. Behrends and K. Nikodem, A selection theorem of Helly type and its applications, Studia Math. 116 (1995), 43-48. | Zbl 0847.52004
[002] [3] B G. Buskes, The Hahn-Banach Theorem surveyed, Dissert. Math. 327 (1993). | Zbl 0808.46003
[003] [4] B. Fuchssteiner and W. Lusky, Convex Cones, North-Holland Math. Stud. 56, North-Holland, Amsterdam, 1981. | Zbl 0478.46002
[004] [5] N. Hirano, H. Komiya and W. Takahashi, A generalization of the Hahn-Banach theorem, J. Math. Anal. Appl. 88 (1982), 333-340. | Zbl 0509.46003
[005] [6] K R. Kaufman, Interpolation of additive functionals, Studia Math. 27 (1966), 269-272. | Zbl 0143.36302
[006] [7] H. König, On the abstract Hahn-Banach Theorem due to Rodé, Aequationes Math. 34 (1987), 89-95. | Zbl 0636.46005
[007] [8] P. Kranz, Additive functionals on abelian semigroups, Comment. Math. Prace Mat. 16 (1972), 239-246. | Zbl 0262.20087
[008] [9] S. Mazur et W. Orlicz, Sur les espaces métriques linéaires II, Studia Math. 13 (1953), 137-179.
[009] [10] K. Nikodem, E. Sadowska and S. Wąsowicz, A note on separation by subadditive and sublinear functions, Ann. Mat. Sil., to appear. | Zbl 0978.39020
[010] [11] K. Nikodem and S. Wąsowicz, A sandwich theorem and Hyers-Ulam stability of affine functions, Aequationes Math. 49 (1995), 160-164. | Zbl 0815.39010
[011] [12] Z. Páles, Geometric versions of Rodé's theorem, Rad. Mat. 8 (1992), 217-229. | Zbl 0937.46005
[012] [13] R G. Rodé, Eine abstrakte Version des Satzes von Hahn-Banach, Arch. Math. (Basel) 31 (1978), 474-481. | Zbl 0402.46003
[013] [14] P. Volkmann and H. Weigel, Systeme von Funktionalgleichungen, ibid. 37 (1981), 443-449. | Zbl 0458.39004