Nonlocal problems for first order functional partial differential equations
Turo, Jan
Annales Polonici Mathematici, Tome 72 (1999), p. 99-114 / Harvested from The Polish Digital Mathematics Library

Local existence of generalized solutions to nonlocal problems for nonlinear functional partial differential equations of first order is investigated. The proof is based on the bicharacteristics and successive approximations methods.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:262771
@article{bwmeta1.element.bwnjournal-article-apmv72z2p99bwm,
     author = {Turo, Jan},
     title = {Nonlocal problems for first order functional partial differential equations},
     journal = {Annales Polonici Mathematici},
     volume = {72},
     year = {1999},
     pages = {99-114},
     zbl = {0944.35107},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv72z2p99bwm}
}
Turo, Jan. Nonlocal problems for first order functional partial differential equations. Annales Polonici Mathematici, Tome 72 (1999) pp. 99-114. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv72z2p99bwm/

[000] [1] P. Bassanini, Su una recente dimostrazione cirza il problema di Cauchy per sistemi quasi lineari iperbolici, Boll. Un. Mat. Ital. B (5) 13 (1976), 322-335. | Zbl 0342.35035

[001] [2] P. Bassanini, On a recent proof concerning a boundary value problem for quasilinear hyperbolic systems in the Schauder canonic form, ibid. A (5) 14 (1977), 325-332. | Zbl 0355.35059

[002] [3] P. Bassanini, Iterative methods for quasilinear hyperbolic systems, ibid. B (6) 1 (1982), 225-250. | Zbl 0488.35056

[003] [4] P. Bassanini e M. C. Salvatori, Un problema ai limiti per sistemi integrodifferenziali non lineari di tipo iperbolico, ibid. B (5) 18 (1981), 785-798. | Zbl 0492.45010

[004] [5] P. Brandi, Z. Kamont and A. Salvadori, Existence of weak solutions for partial differential-functional equations, preprint. | Zbl 0737.35134

[005] [6] L. Byszewski, Existence and uniqueness of solutions of nonlocal problems for hyperbolic equation uxt=F(x,t,u,ux), J. Appl. Math. Stochastic Anal. 3 (1990), 163-168. | Zbl 0725.35059

[006] [7] L. Byszewski, Theorem about existence and uniqueness of continuous solution of nonlocal problem for nonlinear hyperbolic equation, Appl. Anal. 40 (1991), 173-180. | Zbl 0725.35060

[007] [8] L. Byszewski, Existence of a solution of a Fourier nonlocal quasilinear parabolic problem, J. Appl. Math. Stochastic Anal. 5 (1992), 43-68. | Zbl 0769.35024

[008] [9] L. Byszewski, Monotone iterative method for a system of nonlocal initial-boundary parabolic problems, J. Math. Anal. Appl. 177 (1993), 445-458. | Zbl 0791.35058

[009] [10] L. Byszewski and V. Lakshmikantham, Monotone iterative technique for nonlocal hyperbolic differential problem, J. Math. Phys. Sci. 26 (1992), 346-359. | Zbl 0811.35083

[010] [11] L. Cesari, A boundary value problem for quasilinear hyperbolic system, Riv. Mat. Univ. Parma 3 (1974), 107-131. | Zbl 0342.35036

[011] [12] L. Cesari, A boundary value problem for quasilinear hyperbolic system in the Schauder canonic form, Ann. Scuola Norm. Sup. Pisa (4) 1 (1974), 311-358. | Zbl 0307.35063

[012] [13] J. Chabrowski, On non-local problems for parabolic equations, Nagoya Math. J. 93 (1984), 109-131. | Zbl 0506.35048

[013] [14] M. Cinquini-Cibrario e S. Cinquini, Equazioni alle derivate parziali di tipo iperbolico, Cremonese, Roma, 1964. | Zbl 0145.35404

[014] [15] T. Człapiński, On existence and uniqueness of solutions of nonlocal problems for hyperbolic differential-functional equations, preprint. | Zbl 0899.35120

[015] [16] T. Człapiński, On the Cauchy problem for quasilinear hyperbolic systems of partial differential-functional equations of the first order, Z. Anal. Anwendungen 10 (1991), 169-182. | Zbl 0763.35055

[016] [17] T. Człapiński and Z. Kamont, Generalized solutions of quasi-linear hyperbolic systems of partial differential-functional equations, J. Math. Anal. Appl. 172 (1993), 353-370. | Zbl 0798.35149

[017] [18] Z. Kamont, Hyperbolic Functional Differential Inequalities and Applications, Kl-wer, 1999, to appear.

[018] [19] Z. Kamont and J. Turo, On the Cauchy problem for quasilinear hyperbolic system of partial differential equations with a retarded argument, Boll. Un. Mat. Ital. B (6) 4 (1985), 901-916. | Zbl 0614.35089

[019] [20] Z. Kamont and J. Turo, A boundary value problem for quasilinear hyperbolic systems with a retarded argument, Ann. Polon. Math. 47 (1987), 347-360. | Zbl 0658.35085

[020] [21] A. Pliś, Generalization of the Cauchy problem for a system of partial differential equations, Bull. Acad. Polon. Sci. Cl. III 4 (1956), 741-744. | Zbl 0072.10002

[021] [22] P. Pucci, Problemi ai limiti per sistemi di equazioni iperboliche, Boll. Un. Mat. Ital. B (5) 16 (1979), 87-99. | Zbl 0399.35076

[022] [23] J. Szarski, Generalized Cauchy problem for differential-functional equations with first order partial derivatives, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976), 575-580. | Zbl 0352.35030

[023] [24] J. Turo, On some class of quasilinear hyperbolic systems of partial differential-functional equations of the first order, Czechoslovak Math. J. 36 (1986), 185-197. | Zbl 0612.35082

[024] [25] J. Turo, Generalized solutions of the Cauchy problem for nonlinear functional partial differential equations, Z. Anal. Anwendungen 7 (1988), 127-133. | Zbl 0665.35014

[025] [26] J. Turo, Generalized solutions to functional partial differential equations of the first order, Zeszyty Nauk. Politech. Gdańskiej Mat. 14 (1988), 1-99.

[026] [27] J. Turo, A boundary value problem for hyperbolic systems of differential-functional equations, Nonlinear Anal. 13 (1989), 7-18. | Zbl 0678.35090

[027] [28] J. Turo, Classical solutions to nonlinear hyperbolic functional partial differential equations, An. Ştiinţ. Univ. Al. I. Cuza Iaşi Mat. (N.S.), to appear.