Local existence of generalized solutions to nonlocal problems for nonlinear functional partial differential equations of first order is investigated. The proof is based on the bicharacteristics and successive approximations methods.
@article{bwmeta1.element.bwnjournal-article-apmv72z2p99bwm, author = {Turo, Jan}, title = {Nonlocal problems for first order functional partial differential equations}, journal = {Annales Polonici Mathematici}, volume = {72}, year = {1999}, pages = {99-114}, zbl = {0944.35107}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv72z2p99bwm} }
Turo, Jan. Nonlocal problems for first order functional partial differential equations. Annales Polonici Mathematici, Tome 72 (1999) pp. 99-114. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv72z2p99bwm/
[000] [1] P. Bassanini, Su una recente dimostrazione cirza il problema di Cauchy per sistemi quasi lineari iperbolici, Boll. Un. Mat. Ital. B (5) 13 (1976), 322-335. | Zbl 0342.35035
[001] [2] P. Bassanini, On a recent proof concerning a boundary value problem for quasilinear hyperbolic systems in the Schauder canonic form, ibid. A (5) 14 (1977), 325-332. | Zbl 0355.35059
[002] [3] P. Bassanini, Iterative methods for quasilinear hyperbolic systems, ibid. B (6) 1 (1982), 225-250. | Zbl 0488.35056
[003] [4] P. Bassanini e M. C. Salvatori, Un problema ai limiti per sistemi integrodifferenziali non lineari di tipo iperbolico, ibid. B (5) 18 (1981), 785-798. | Zbl 0492.45010
[004] [5] P. Brandi, Z. Kamont and A. Salvadori, Existence of weak solutions for partial differential-functional equations, preprint. | Zbl 0737.35134
[005] [6] L. Byszewski, Existence and uniqueness of solutions of nonlocal problems for hyperbolic equation , J. Appl. Math. Stochastic Anal. 3 (1990), 163-168. | Zbl 0725.35059
[006] [7] L. Byszewski, Theorem about existence and uniqueness of continuous solution of nonlocal problem for nonlinear hyperbolic equation, Appl. Anal. 40 (1991), 173-180. | Zbl 0725.35060
[007] [8] L. Byszewski, Existence of a solution of a Fourier nonlocal quasilinear parabolic problem, J. Appl. Math. Stochastic Anal. 5 (1992), 43-68. | Zbl 0769.35024
[008] [9] L. Byszewski, Monotone iterative method for a system of nonlocal initial-boundary parabolic problems, J. Math. Anal. Appl. 177 (1993), 445-458. | Zbl 0791.35058
[009] [10] L. Byszewski and V. Lakshmikantham, Monotone iterative technique for nonlocal hyperbolic differential problem, J. Math. Phys. Sci. 26 (1992), 346-359. | Zbl 0811.35083
[010] [11] L. Cesari, A boundary value problem for quasilinear hyperbolic system, Riv. Mat. Univ. Parma 3 (1974), 107-131. | Zbl 0342.35036
[011] [12] L. Cesari, A boundary value problem for quasilinear hyperbolic system in the Schauder canonic form, Ann. Scuola Norm. Sup. Pisa (4) 1 (1974), 311-358. | Zbl 0307.35063
[012] [13] J. Chabrowski, On non-local problems for parabolic equations, Nagoya Math. J. 93 (1984), 109-131. | Zbl 0506.35048
[013] [14] M. Cinquini-Cibrario e S. Cinquini, Equazioni alle derivate parziali di tipo iperbolico, Cremonese, Roma, 1964. | Zbl 0145.35404
[014] [15] T. Człapiński, On existence and uniqueness of solutions of nonlocal problems for hyperbolic differential-functional equations, preprint. | Zbl 0899.35120
[015] [16] T. Człapiński, On the Cauchy problem for quasilinear hyperbolic systems of partial differential-functional equations of the first order, Z. Anal. Anwendungen 10 (1991), 169-182. | Zbl 0763.35055
[016] [17] T. Człapiński and Z. Kamont, Generalized solutions of quasi-linear hyperbolic systems of partial differential-functional equations, J. Math. Anal. Appl. 172 (1993), 353-370. | Zbl 0798.35149
[017] [18] Z. Kamont, Hyperbolic Functional Differential Inequalities and Applications, Kl-wer, 1999, to appear.
[018] [19] Z. Kamont and J. Turo, On the Cauchy problem for quasilinear hyperbolic system of partial differential equations with a retarded argument, Boll. Un. Mat. Ital. B (6) 4 (1985), 901-916. | Zbl 0614.35089
[019] [20] Z. Kamont and J. Turo, A boundary value problem for quasilinear hyperbolic systems with a retarded argument, Ann. Polon. Math. 47 (1987), 347-360. | Zbl 0658.35085
[020] [21] A. Pliś, Generalization of the Cauchy problem for a system of partial differential equations, Bull. Acad. Polon. Sci. Cl. III 4 (1956), 741-744. | Zbl 0072.10002
[021] [22] P. Pucci, Problemi ai limiti per sistemi di equazioni iperboliche, Boll. Un. Mat. Ital. B (5) 16 (1979), 87-99. | Zbl 0399.35076
[022] [23] J. Szarski, Generalized Cauchy problem for differential-functional equations with first order partial derivatives, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976), 575-580. | Zbl 0352.35030
[023] [24] J. Turo, On some class of quasilinear hyperbolic systems of partial differential-functional equations of the first order, Czechoslovak Math. J. 36 (1986), 185-197. | Zbl 0612.35082
[024] [25] J. Turo, Generalized solutions of the Cauchy problem for nonlinear functional partial differential equations, Z. Anal. Anwendungen 7 (1988), 127-133. | Zbl 0665.35014
[025] [26] J. Turo, Generalized solutions to functional partial differential equations of the first order, Zeszyty Nauk. Politech. Gdańskiej Mat. 14 (1988), 1-99.
[026] [27] J. Turo, A boundary value problem for hyperbolic systems of differential-functional equations, Nonlinear Anal. 13 (1989), 7-18. | Zbl 0678.35090
[027] [28] J. Turo, Classical solutions to nonlinear hyperbolic functional partial differential equations, An. Ştiinţ. Univ. Al. I. Cuza Iaşi Mat. (N.S.), to appear.