We prove an existence theorem of Cauchy-Kovalevskaya type for the equation where f is a polynomial with respect to the last k variables.
@article{bwmeta1.element.bwnjournal-article-apmv72z2p181bwm, author = {Augustynowicz, Antoni}, title = {On a theorem of Cauchy-Kovalevskaya type for a class of nonlinear PDE's of higher order with deviating arguments}, journal = {Annales Polonici Mathematici}, volume = {72}, year = {1999}, pages = {181-190}, zbl = {0946.35005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv72z2p181bwm} }
Augustynowicz, Antoni. On a theorem of Cauchy-Kovalevskaya type for a class of nonlinear PDE's of higher order with deviating arguments. Annales Polonici Mathematici, Tome 72 (1999) pp. 181-190. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv72z2p181bwm/
[00000] [1] A. Augustynowicz, Existence and uniqueness of solutions for partial differential-functional equations of the first order with deviating arguments of the derivative of unknown function, Serdica Math. J. 23 (1997), 203-210. | Zbl 0978.35086
[00001] [2] A. Augustynowicz, Analytic solutions to the first order partial differential equations with time delays at the derivatives, Funct. Differ. Equations 6 (1999), 19-29. | Zbl 1027.35144
[00002] [3] A. Augustynowicz and H. Leszczyński, On the existence of analytic solutions of the Cauchy problem for first-order partial differential equations with retarded variables, Comment. Math. Prace Mat. 36 (1996), 11-25. | Zbl 0877.35130
[00003] [4] A. Augustynowicz and H. Leszczyński, On x-analytic solutions to the Cauchy problem for partial differential equations with retarded variables, Z. Anal. Anwendungen 15 (1996), 345-356. | Zbl 0847.35029
[00004] [5] A. Augustynowicz and H. Leszczyński, Periodic solutions to the Cauchy problem for PDEs with retarded variables, submitted.
[00005] [6] A. Augustynowicz, H. Leszczyński and W. Walter, Cauchy-Kovalevskaya theory for equations with deviating variables, Aequationes Math. 58 (1999), 143-156. | Zbl 0929.35004
[00006] [7] A. Augustynowicz, H. Leszczyński and W. Walter, Cauchy-Kovalevskaya theory for nonlinear equations with deviating variables, Nonlinear Anal., to appear. | Zbl 0989.35132
[00007] [8] S. von Kowalevsky, Zur Theorie der partiellen Differentialgleichungen, J. Reine Angew. Math. 80 (1875), 1-32.
[00008] [9] H. Leszczyński, Fundamental solutions to linear first-order equations with a delay at derivatives, Boll. Un. Mat. Ital. A (7) 10 (1996), 363-375. | Zbl 0865.35137
[00009] [10] M. Nagumo, Über das Anfangswertproblem partieller Differentialgleichungen, Japan. J. Math. 18 (1942), 41-47. | Zbl 0061.21107
[00010] [11] R. M. Redheffer and W. Walter, Existence theorems for strongly coupled systems of partial differential equations over Bernstein classes, Bull. Amer. Math. Soc. 82 (1976), 899-902. | Zbl 0349.35015
[00011] [12] W. Walter, An elementary proof of the Cauchy-Kovalevsky Theorem, Amer. Math. Monthly 92 (1985), 115-126. | Zbl 0576.35002
[00012] [13] W. Walter, Functional differential equations of the Cauchy-Kovalevsky type, Aequationes Math. 28 (1985), 102-113. | Zbl 0576.35003
[00013] [14] T. Yamanaka, A Cauchy-Kovalevskaja type theorem in the Gevrey class with a vector-valued time variable, Comm. Partial Differential Equations 17 (1992), 1457-1502. | Zbl 0816.35013
[00014] [15] T. Yamanaka and H. Tamaki, Cauchy-Kovalevskaya theorem for functional partial differential equations, Comment. Math. Univ. St. Paul. 29 (1980), 55-64. | Zbl 0437.35003