For a given unital Banach algebra A we describe joint spectra which satisfy the one-way spectral mapping property. Each spectrum of this class is uniquely determined by a family of linear subspaces of A called spectral subspaces. We introduce a topology in the space of all spectral subspaces of A and utilize it to the study of the properties of the spectra.
@article{bwmeta1.element.bwnjournal-article-apmv72z2p131bwm, author = {Mart\'\i nez Mel\'endez, Angel and Wawrzy\'nczyk, Antoni}, title = {An approach to joint spectra}, journal = {Annales Polonici Mathematici}, volume = {72}, year = {1999}, pages = {131-144}, zbl = {0967.46033}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv72z2p131bwm} }
Martínez Meléndez, Angel; Wawrzyńczyk, Antoni. An approach to joint spectra. Annales Polonici Mathematici, Tome 72 (1999) pp. 131-144. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv72z2p131bwm/
[000] [1] C.-K. Fong and A. Sołtysiak, Existence of a multiplicative functional and joint spectra, Studia Math. 81 (1985), 213-220. | Zbl 0529.46034
[001] [2] R. Harte, Invertibility and Singularity for Bounded Linear Operators, Marcel Dekker, New York, 1988. | Zbl 0636.47001
[002] [3] V. Kordula and V. Müller, On the axiomatic theory of spectrum, Studia Math. 119 (1996), 109-128. | Zbl 0857.47001
[003] [4] V. Müller, Spectral systems, unpublished notes, 1997.
[004] [5] A. Sołtysiak, Approximate point joint spectrum and multiplicative functionals, Studia Math. 86 (1987), 227-286. | Zbl 0646.46041
[005] [6] A. Sołtysiak, Joint spectra and multiplicative functionals, Colloq. Math. 56 (1989), 357-366.
[006] [7] A. Sołtysiak, Joint Spectra and Multiplicative Linear Functionals in Non-commutative Banach Algebras, Wyd. Nauk. Uniw. im. A. Mickiewicza, Poznań, 1988. | Zbl 0675.46018
[007] [8] W. Żelazko, An axiomatic approach to joint spectra I, Studia Math. 64 (1979), 249-261. | Zbl 0426.47002