The linear homogeneous differential equation with variable delays is considered, where , I = [t₀,∞), ℝ⁺ = (0,∞), on I, the functions , j=1,...,n, are increasing and the delays are bounded. A criterion and some sufficient conditions for convergence of all solutions of this equation are proved. The related problem of nonconvergence is also discussed. Some comparisons to known results are given.
@article{bwmeta1.element.bwnjournal-article-apmv72z2p115bwm, author = {Dibl\'\i k, Josef}, title = {A criterion for convergence of solutions of homogeneous delay linear differential equations}, journal = {Annales Polonici Mathematici}, volume = {72}, year = {1999}, pages = {115-130}, zbl = {0953.34065}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv72z2p115bwm} }
Diblík, Josef. A criterion for convergence of solutions of homogeneous delay linear differential equations. Annales Polonici Mathematici, Tome 72 (1999) pp. 115-130. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv72z2p115bwm/
[00000] [1] O. Arino, I. Győri and M. Pituk, Asymptotically diagonal delay differential systems, J. Math. Anal. Appl. (in the press). | Zbl 0876.34078
[00001] [2] F. V. Atkinson and J. R. Haddock, Criteria for asymptotic constancy of solutions of functional differential equations, J. Math. Anal. Appl. 91 (1983), 410-423. | Zbl 0529.34065
[00002] [3] R. Bellman and K. L. Cooke, Differential-Difference Equations, Academic Press, New York, 1963. | Zbl 0105.06402
[00003] [4] K. Borsuk, Theory of Retracts, PWN, Warszawa, 1967. | Zbl 0153.52905
[00004] [5] J. Čermák, On the asymptotic behaviour of solutions of certain functional differential equations, Math. Slovaca 48 (1998), 187-212. | Zbl 0942.34060
[00005] [6] J. Čermák, The asymptotic bounds of solutions of linear delay systems, J. Math. Anal. Appl. 225 (1998), 373-388. | Zbl 0913.34063
[00006] [7] J. Diblík, Asymptotic representation of solutions of equation ẏ(t) = β(t)[y(t)-y(t-τ(t))], ibid. 217 (1998), 200-215. | Zbl 0892.34067
[00007] [8] I. Győri and M. Pituk, Comparison theorems and asymptotic equilibrium for delay differential and difference equations, Dynam. Systems Appl. 5 (1996), 277-302. | Zbl 0859.34053
[00008] [9] I. Győri and M. Pituk, L²-perturbation of a linear delay differential equation, J. Math. Anal. Appl. 195 (1995), 415-427. | Zbl 0853.34070
[00009] [10] J. K. Hale and S. M. V. Lunel, Introduction to Functional Differential Equations, Springer, 1993.
[00010] [11] T. Krisztin, Asymptotic estimation for functional differential equations via Lyapunov functions, J. Math. Anal. Appl. 109 (1985), 509-521. | Zbl 0586.34061
[00011] [12] T. Krisztin, On the rate of convergence of solutions of functional differential equations, Funkcial. Ekvac. 29 (1986), 1-10. | Zbl 0601.34046
[00012] [13] T. Krisztin, A note on the convergence of the solutions of a linear functional differential equation, J. Math. Anal. Appl. 145 (1990), 17-25. | Zbl 0693.45012
[00013] [14] F. Neuman, On equivalence of linear functional-differential equations, Results in Math. 26 (1994), 354-359. | Zbl 0829.34054
[00014] [15] F. Neuman, On transformations of differential equations and systems with deviating argument, Czechoslovak Math. J. 31 (1981), 87-90. | Zbl 0463.34051
[00015] [16] K. P. Rybakowski, Ważewski's principle for retarded functional differential equations, J. Differential Equations 36 (1980), 117-138. | Zbl 0407.34056
[00016] [17] T. Ważewski, Sur un principe topologique de l'examen de l'allure asymptotique des intégrales des équations différentielles ordinaires, Ann. Soc. Polon. Math. 20 (1947), 279-313. | Zbl 0032.35001
[00017] [18] S. N. Zhang, Asymptotic behaviour and structure of solutions for equation ẋ(t) = p(t)[x(t) - x(t-1)], J. Anhui Univ. (Natural Science Edition) 2 (1981), 11-21 (in Chinese).