We characterize the linear space ℋ of differences of support functions of convex bodies of 𝔼² and we consider every h ∈ ℋ as the support function of a generalized hedgehog (a rectifiable closed curve having exactly one oriented support line in each direction). The mixed area (for plane convex bodies identified with their support functions) has a symmetric bilinear extension to ℋ which can be interpreted as a mixed area for generalized hedgehogs. We study generalized hedgehogs and we extend the Minkowski inequality.
@article{bwmeta1.element.bwnjournal-article-apmv72z1p71bwm, author = {Martinez-Maure, Yves}, title = {\'Etude des diff\'erences de corps convexes plans}, journal = {Annales Polonici Mathematici}, volume = {72}, year = {1999}, pages = {71-78}, zbl = {0952.52007}, language = {fra}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv72z1p71bwm} }
Martinez-Maure, Yves. Étude des différences de corps convexes plans. Annales Polonici Mathematici, Tome 72 (1999) pp. 71-78. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv72z1p71bwm/
[000] [1] H. Geppert, Über den Brunn-Minkowskischen Satz, Math. Z. 42 (1937), 238-254. | Zbl 0015.41001
[001] [2] M. Kallay, Reconstruction of a plane convex body from the curvature of its boundary, Israel J. Math. 17 (1974), 149-161. | Zbl 0285.52001
[002] [3] R. Langevin, G. Levitt et H. Rosenberg, Hérissons et multihérissons, dans : Singularities, Banach Center Publ. 20, PWN, Warszawa, 1988, 245-253.
[003] [4] Y. Martinez-Maure, De nouvelles inégalités géométriques pour les hérissons, Arch. Math. (Basel) 72 (1999), 444-453.
[004] [5] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Cambridge Univ. Press, 1993. | Zbl 0798.52001