Projective quartics revisited
Szemberg, T. ; Tutaj-Gasińska, H.
Annales Polonici Mathematici, Tome 72 (1999), p. 43-50 / Harvested from The Polish Digital Mathematics Library

We classify all smooth projective varieties of degree 4 and describe their syzygies.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:262546
@article{bwmeta1.element.bwnjournal-article-apmv72z1p43bwm,
     author = {Szemberg, T. and Tutaj-Gasi\'nska, H.},
     title = {Projective quartics revisited},
     journal = {Annales Polonici Mathematici},
     volume = {72},
     year = {1999},
     pages = {43-50},
     zbl = {0977.14018},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv72z1p43bwm}
}
Szemberg, T.; Tutaj-Gasińska, H. Projective quartics revisited. Annales Polonici Mathematici, Tome 72 (1999) pp. 43-50. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv72z1p43bwm/

[000] [1] W. Barth, C. Peters and A. Van de Ven, Compact Complex Surfaces, Ergeb. Math. Grenzgeb. (3) 4, Springer, 1984. | Zbl 0718.14023

[001] [2] T. Fujita, On polarized manifolds whose adjoint bundles are not semipositive, in: Algebraic Geometry, Sendai, 1985, Adv. Stud. Pure Math. 10, 1987, 167-178.

[002] [3] J. Harris, Algebraic Geometry. A First Course, Springer, 1992. | Zbl 0779.14001

[003] [4] R. Hartshorne, Algebraic Geometry, Springer, 1977.

[004] [5] P. Ionescu, Variétés projectives lisses de degrés 5 et 6, C. R. Acad. Sci. Paris 293 (1981), 685-687. | Zbl 0516.14025

[005] [6] P. Ionescu, On varieties whose degree is small with respect to codimension, Math. Ann. 271 (1985), 339-348. | Zbl 0541.14032

[006] [7] D. Mumford, Varieties defined by quadratic equations, in: Questions on Algebraic Varieties, Edizioni Cremonese, Roma, 1970, 29-94 (Appendix by G. Kempf, 95-100).

[007] [8] H. P. F. Swinnerton-Dyer, An enumeration of all varieties of degree 4, Amer. J. Math. 95 (1973), 403-418. | Zbl 0281.14023