We classify all smooth projective varieties of degree 4 and describe their syzygies.
@article{bwmeta1.element.bwnjournal-article-apmv72z1p43bwm, author = {Szemberg, T. and Tutaj-Gasi\'nska, H.}, title = {Projective quartics revisited}, journal = {Annales Polonici Mathematici}, volume = {72}, year = {1999}, pages = {43-50}, zbl = {0977.14018}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv72z1p43bwm} }
Szemberg, T.; Tutaj-Gasińska, H. Projective quartics revisited. Annales Polonici Mathematici, Tome 72 (1999) pp. 43-50. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv72z1p43bwm/
[000] [1] W. Barth, C. Peters and A. Van de Ven, Compact Complex Surfaces, Ergeb. Math. Grenzgeb. (3) 4, Springer, 1984. | Zbl 0718.14023
[001] [2] T. Fujita, On polarized manifolds whose adjoint bundles are not semipositive, in: Algebraic Geometry, Sendai, 1985, Adv. Stud. Pure Math. 10, 1987, 167-178.
[002] [3] J. Harris, Algebraic Geometry. A First Course, Springer, 1992. | Zbl 0779.14001
[003] [4] R. Hartshorne, Algebraic Geometry, Springer, 1977.
[004] [5] P. Ionescu, Variétés projectives lisses de degrés 5 et 6, C. R. Acad. Sci. Paris 293 (1981), 685-687. | Zbl 0516.14025
[005] [6] P. Ionescu, On varieties whose degree is small with respect to codimension, Math. Ann. 271 (1985), 339-348. | Zbl 0541.14032
[006] [7] D. Mumford, Varieties defined by quadratic equations, in: Questions on Algebraic Varieties, Edizioni Cremonese, Roma, 1970, 29-94 (Appendix by G. Kempf, 95-100).
[007] [8] H. P. F. Swinnerton-Dyer, An enumeration of all varieties of degree 4, Amer. J. Math. 95 (1973), 403-418. | Zbl 0281.14023