In [OV] we introduced an affine curvature tensor R*. Using it we characterized some types of hypersurfaces in the affine space . In this paper we study hypersurfaces for which R* is parallel relative to the induced connection.
@article{bwmeta1.element.bwnjournal-article-apmv72z1p25bwm, author = {Opozda, Barbara and Verstraelen, Leopold}, title = {Hypersurfaces with parallel affine curvature tensor R*}, journal = {Annales Polonici Mathematici}, volume = {72}, year = {1999}, pages = {25-32}, zbl = {0954.53009}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv72z1p25bwm} }
Opozda, Barbara; Verstraelen, Leopold. Hypersurfaces with parallel affine curvature tensor R*. Annales Polonici Mathematici, Tome 72 (1999) pp. 25-32. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv72z1p25bwm/
[000] [D]₁ R. Deszcz, Pseudosymmetry curvature conditions imposed on the shape operators of hypersurfaces in the affine space, Results Math. 20 (1991), 600-621. | Zbl 0752.53009
[001] [D]₂ R. Deszcz, Certain curvature characterizations of affine hypersurfaces, Colloq. Math. 63 (1992), 21-39. | Zbl 0797.53005
[002] [NS] K. Nomizu and T. Sasaki, Affine Differential Geometry, Cambridge Univ. Press, 1994.
[003] [O] B. Opozda, A class of projectively flat surfaces, Math. Z. 219 (1995), 77-92. | Zbl 0823.53012
[004] [OS] B. Opozda and T. Sasaki, Surfaces whose images of affine normal are curves, Kyushu Math. J. 49 (1995), 1-10. | Zbl 0837.53012
[005] [OV] B. Opozda and L. Verstraelen, On a new curvature tensor in affine differential geometry, in: Geometry and Topology of Submanifolds II, World Sci., 1990, 271-293.
[006] [VV] P. Verheyen and L. Verstraelen, Locally symmetric affine hypersurfaces, Proc. Amer. Math. Soc. 93 (1985), 101-105. | Zbl 0535.53007