Non-zero constant Jacobian polynomial maps of ²
Nguyen Van Chau
Annales Polonici Mathematici, Tome 72 (1999), p. 287-310 / Harvested from The Polish Digital Mathematics Library

We study the behavior at infinity of non-zero constant Jacobian polynomial maps f = (P,Q) in ℂ² by analyzing the influence of the Jacobian condition on the structure of Newton-Puiseux expansions of branches at infinity of level sets of the components. One of the results obtained states that the Jacobian conjecture in ℂ² is true if the Jacobian condition ensures that the restriction of Q to the curve P = 0 has only one pole.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:262821
@article{bwmeta1.element.bwnjournal-article-apmv71z3p287bwm,
     author = {Nguyen Van Chau},
     title = {Non-zero constant Jacobian polynomial maps of $$\mathbb{C}$$^2$$
            },
     journal = {Annales Polonici Mathematici},
     volume = {72},
     year = {1999},
     pages = {287-310},
     zbl = {0942.14032},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv71z3p287bwm}
}
Nguyen Van Chau. Non-zero constant Jacobian polynomial maps of $ℂ²$
            . Annales Polonici Mathematici, Tome 72 (1999) pp. 287-310. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv71z3p287bwm/

[000] [A] S. S. Abhyankar, Expansion Techniques in Algebraic Geometry, Tata Inst. Fund. Research, 1977. | Zbl 0818.14001

[001] [AM] S. S. Abhyankar and T. T. Moh, Embeddings of the line in the plane, J. Reine Angew. Math. 276 (1975), 148-166. | Zbl 0332.14004

[002] [BCW] H. Bass, E. Connell and D. Wright, The Jacobian conjecture: reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc. (N.S.) 7 (1982), 287-330. | Zbl 0539.13012

[003] [BK] E. Brieskorn und H. Knörrer, Ebene algebraische Kurven, Birkhäuser, Basel, 1981.

[004] [Ca] L. A. Campbell, Partial properness and the Jacobian conjecture, Appl. Math. Lett. 9 (1996), no. 2, 5-10. | Zbl 0858.14006

[005] [C1] Nguyen Van Chau, Remark on the Vitushkin covering, Acta Math. Vietnam. 24 (1999), 109-115. | Zbl 0951.14008

[006] [C2] Nguyen Van Chau, Newton-Puiseux expansion approach to the Jacobian conjecture, preprint 14/98, Math. Inst. Hanoi, 1998.

[007] [CK] J. Chądzyński and T. Krasiński, On a formula for the geometric degree and Jung' theorem, Univ. Iagell. Acta Math. 28 (1991), 81-84. | Zbl 0757.14006

[008] [D1] L. M. Drużkowski, A geometric approach to the Jacobian Conjecture in ℂ², Ann. Polon. Math. 55 (1991), 95-101.

[009] [D2] L. M. Drużkowski, The Jacobian Conjecture, preprint 492, Inst. Math., Polish Acad. Sci., Warszawa, 1991.

[010] [H] R. C. Heitmann, On the Jacobian conjecture, J. Pure Appl. Algebra 64 (1990), 35-72. | Zbl 0704.13010

[011] [HL] H. V. Ha et D. T. Le, Sur la topologie des polynômes complexes, Acta Math. Vietnam. 9 (1984), 21-32 (1985).

[012] [J] H. W. E. Jung, Über ganze birationale Transformationen der Ebene, J. Reine Angew. Math. 184 (1942), 161-174. | Zbl 0027.08503

[013] [Ka] S. Kaliman, On the Jacobian conjecture, Proc. Amer. Math. Soc. 117 (1993), 45-51. | Zbl 0782.13017

[014] [K] O. Keller, Ganze Cremona-Transformationen, Monatsh. Mat. Phys. 47 (1939), 299-306.

[015] [Kul] W. van der Kulk, On polynomial rings in two variables, Nieuw Arch. Wisk. (3) 1 (1953), 33-41. | Zbl 0050.26002

[016] [LW] D. T. Le et C. Weber, Polynômes à fibrés rationnelles et conjecture jacobienne à 2 variables, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), 581-584.

[017] [MK] J. H. McKay and S. S.-S. Wang, An elementary proof of the automorphism theorem for the polynomial ring in two variables, J. Pure Appl. Algebra 52 (1988), 91-102. | Zbl 0656.13002

[018] [O1] S. Yu. Orevkov, On three-sheeted polynomial mappings of ℂ², Izv. Akad. Nauk SSSR 50 (1986), 1231-1240 (in Russian).

[019] [O2] S. Yu. Orevkov, Mappings of Eisenbud-Neumann splice diagrams, lecture given at International Workshop on Affine Algebraic Geometry (Haifa, 1993).

[020] [O3] S. Yu. Orevkov, Rudolph diagram and analytical realization of Vitushkin's covering, Mat. Zametki 60 (1996), 206-224, 319 (in Russian).

[021] [P] S. Pinchuk, A counterexample to the strong real Jacobian Conjecture, Math. Z. 217 (1994), 1-4. | Zbl 0874.26008

[022] [St] Y. Stein, The Jacobian problem as a system of ordinary differential equations, Israel J. Math. 89 (1995), 301-319. | Zbl 0823.34010

[023] [Su] M. Suzuki, Propriétés topologiques des polynômes de deux variables complexes et automorphismes algébriques de l'espace ℂ², J. Math. Soc. Japan 26 (1974), 241-257. | Zbl 0276.14001

[024] [Ve] J. L. Verdier, Stratifications de Whitney et théorème de Bertini-Sard, Invent. Math. 36 (1976), 295-312.

[025] [Vi] A. G. Vitushkin, On polynomial transformations of Cn, in: Manifolds (Tokyo, 1973), Tokyo Univ. Press, 1975, 415-417.