Hyperbolically convex functions II
William Ma ; David Minda
Annales Polonici Mathematici, Tome 72 (1999), p. 273-285 / Harvested from The Polish Digital Mathematics Library

Unlike those for euclidean convex functions, the known characterizations for hyperbolically convex functions usually contain terms that are not holomorphic. This makes hyperbolically convex functions much harder to investigate. We give a geometric proof of a two-variable characterization obtained by Mejia and Pommerenke. This characterization involves a function of two variables which is holomorphic in one of the two variables. Various applications of the two-variable characterization result in a number of analogies with the classical theory of euclidean convex functions. In particular, we obtain a uniform upper bound on the Schwarzian derivative. We also obtain the sharp lower bound on |f'(z)| for all z in the unit disk, and the sharp upper bound on |f'(z)| when |z| ≤ √2 - 1.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:262813
@article{bwmeta1.element.bwnjournal-article-apmv71z3p273bwm,
     author = {William Ma and David Minda},
     title = {Hyperbolically convex functions II},
     journal = {Annales Polonici Mathematici},
     volume = {72},
     year = {1999},
     pages = {273-285},
     zbl = {0927.30009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv71z3p273bwm}
}
William Ma; David Minda. Hyperbolically convex functions II. Annales Polonici Mathematici, Tome 72 (1999) pp. 273-285. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv71z3p273bwm/

[000] [1] L. V. Ahlfors, Complex Analysis, 3rd ed., McGraw-Hill, New York, 1979. | Zbl 0395.30001

[001] [2] R. Fournier, J. Ma and S. Ruscheweyh, Convex univalent functions and omitted values, preprint. | Zbl 0912.30007

[002] [3] W. Ma and D. Minda, Hyperbolically convex functions, Ann. Polon. Math. 60 (1994), 81-100. | Zbl 0818.30010

[003] [4] W. Ma and D. Minda, Hyperbolic linear invariance and hyperbolic k-convexity, J. Austral. Math. Soc. Ser. A 58 (1995), 73-93. | Zbl 0838.30022

[004] [5] D. Mejia, Ch. Pommerenke and A. Vasil'ev, Distortion theorems for hyperbolically convex functions, preprint.

[005] [6] D. Mejia and Ch. Pommerenke, On hyperbolically convex functions, J. Geom. Anal., to appear. | Zbl 1021.30009

[006] [7] S. Ruscheweyh, Convolutions in Geometric Function Theory, Les Presses de l'Université de Montréal, Montréal, 1982.

[007] [8] T. Sheil-Small, On convex univalent functions, J. London Math. Soc. 1 (1969), 483-492. | Zbl 0201.40802

[008] [9] T. J. Suffridge, Some remarks on convex maps of the unit disk, Duke Math. J. 37 (1970), 775-777. | Zbl 0206.36202

[009] [10] S. Y. Trimble, A coefficient inequality for convex univalent functions, Proc. Amer. Math. Soc. 48 (1975), 266-267. | Zbl 0283.30014