We prove that the Bergman metric on domains satisfying condition S is complete. This implies that any bounded pseudoconvex domain with Lipschitz boundary is complete with respect to the Bergman metric. We also show that bounded hyperconvex domains in the plane and convex domains in are Bergman comlete.
@article{bwmeta1.element.bwnjournal-article-apmv71z3p241bwm, author = {Bo-Yong Chen}, title = {Completeness of the Bergman metric on non-smooth pseudoconvex domains}, journal = {Annales Polonici Mathematici}, volume = {72}, year = {1999}, pages = {241-251}, zbl = {0937.32014}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv71z3p241bwm} }
Bo-Yong Chen. Completeness of the Bergman metric on non-smooth pseudoconvex domains. Annales Polonici Mathematici, Tome 72 (1999) pp. 241-251. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv71z3p241bwm/
[000] [1] E. Bedford and J. P. Demailly, Two counterexamples concerning the pluri-complex Green function in , Indiana Univ. Math. J. 37 (1988), 865-867. | Zbl 0681.32014
[001] [2] S. Bergman, The Kernel Function and Conformal Mapping, 2nd ed., Amer. Math. Soc., Providence, R.I., 1970. | Zbl 0208.34302
[002] [3] Z. Błocki, Smooth exhaustion functions in convex domains, Proc. Amer. Math. Soc. 125 (1997), 477-484. | Zbl 0889.35030
[003] [4] H. J. Bremermann, Holomorphic continuation of the kernel function and the Bergman metric in several complex variables, in: Lectures on Functions of a Complex Variable, Univ. of Michigan Press, 1955, 349-383.
[004] [5] J. P. Demailly, Mesures de Monge-Ampère et mesures pluriharmoniques, Math. Z. 194 (1987), 519-564. | Zbl 0595.32006
[005] [6] K. Diederich and T. Ohsawa, General continuity principles for the Bergman kernel, Internat. J. Math. 5 (1994), 189-199. | Zbl 0805.32013
[006] [7] H. Grauert, Charakterisierung der Holomorphiegebiete durch die vollständige Kählersche Metrik, Math. Ann. 131 (1956), 38-75. | Zbl 0073.30203
[007] [8] L. Hörmander, An Introduction to Complex Analysis in Several Variables, North-Holland, 1990.
[008] [9] M. Jarnicki and P. Pflug, Bergman completeness of complete circular domains, Ann. Polon. Math. 50 (1989), 219-222. | Zbl 0701.32002
[009] [10] N. Kerzman et J.-P. Rosay, Fonctions plurisousharmoniques d'exhaustion bornées et domaines taut, Math. Ann. 257 (1981), 171-184. | Zbl 0451.32012
[010] [11] S. Kobayashi, Geometry of bounded domains, Trans. Amer. Math. Soc. 92 (1959), 267-290. | Zbl 0136.07102
[011] [12] T. Ohsawa, On the Bergman kernel of hyperconvex domains, Nagoya Math. J. 129 (1993), 43-52. | Zbl 0774.32016
[012] [13] T. Ohsawa, On the completeness of the Bergman metric, Proc. Japan Acad. Ser. A Math. Sci. 57 (1981), 238-240. | Zbl 0508.32008
[013] [14] P. Pflug, Various applications of the existence of well growing holomorphic functions, in: Functional Analysis, Holomorphy and Approximation Theory, J. A. Barroso (ed.), North-Holland Math. Stud. 71, North-Holland, 1982, 391-412.
[014] [15] W. Zwonek, On symmetry of the pluricomplex Green function for ellipsoids, Ann. Polon. Math. 67 (1997), 121-129. | Zbl 0884.31006